The authors’ research work into fully developed pulsating and oscillating laminar pipe and channel flows raised questions regarding the development length of the corresponding steady flow. For this development length, i.e., the distance from the entrance of the pipe to the axial position where the flow reaches the parabolic velocity profile of the Hagen-Poiseuille flow, a wide range of contradictory data exists. This is shown through a short review of the existing literature. Superimposed diffusion and convection, together with order of magnitude considerations, suggest that the normalized development length can be expressed as LD=C0+C1Re and for Re0 one obtains C0=0.619, whereas for Re one obtains C1=0.0567. This relationship is given only once in the literature and it is presumed to be valid for all Reynolds numbers. Numerical studies show that it is only valid for Re0 and Re. The development length of laminar, plane channel flow was also investigated. The authors obtained similar results to those for the pipe flow: LD=C0+C1; Re, where C0=0.631 and C1=0.044. Finally, correlations are given to express LD analytically for the entire Re range for both laminar pipe and channel flows.

1.
Schlichting
,
H.
, 1979,
Boundary Layer Theory
,
McGraw-Hill
, NY.
2.
Schiller
,
L.
, 1922, “
Die Entwicklung der laminaren Geschwindigkeitsverteilung und ihre Bedeutung für Ähnlichkeitsmessungen
,”
Z. Angew. Math. Mech.
0044-2267,
2
, pp.
96
106
.
3.
Langhaar
,
H. L.
, 1942, “
Steady flow in the transition length of a straight tube
,”
J. Appl. Mech.
0021-8936,
9
, pp.
55
58
4.
Sparrow
,
E. M.
,
Lin
,
S. H.
, and
Lundgren
,
T. S.
, 1964, “
Flow development in the hydrodynamic entrance region of tubes and ducts
,”
Phys. Fluids
0031-9171,
7
(
3
), pp.
338
347
.
5.
Schmidt
,
F. W.
, and
Zeldin
, 1969, “
Laminar flow in inlet sections of tubes and ducts
,”
AIChE J.
0001-1541,
15
(
4
), pp.
612
614
.
6.
Lew
,
H. S.
, and
Fung
,
Y. C.
, 1970, “
Entry flow into blood vessels at arbitrary Reynolds number
,”
J. Biomech.
0021-9290,
3
, p.
23
.
7.
Mohanty
,
A. K.
, and
Asthana
,
B. L.
, 1979, “
Laminar flow in the entrance region of a smooth pipe
,”
J. Fluid Mech.
0022-1120,
90
, pp.
433
449
8.
Boussinesq
,
J.
, 1891, “
Sur la maniere don't les vitesses, dans un tube cylindrique de section circulaire, evase a son entrée, se distribuent depuis entrée jusqu'aux endroits ou se trouve etabli un regime uniforme
,”
Compt. Rend.
0001-4036,
113
, pp.
49
51
.
9.
Nikuradse
,
J.
, 1950,
Applied Hydro and Aerodynamics
,
McGraw-Hill
, NY, p.
27
.
10.
Atkinson
,
B.
, and
Goldstein
,
S.
, 1938,
Unpublished work described in Modern Developments in Fluid Dynamics
,
Oxford University Press
, Oxford, Vol.
1
, p.
304
.
11.
Siegel
,
R.
, 1953, “
The effect of heating on boundary layer transition for liquid flow in a tube
,” Sc.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
12.
Bogue
,
D. C.
, 1959, “
Entrance effects and prediction of turbulence in non Newtonian flow
,”
Ind. Eng. Chem.
0019-7866,
51
(
7
), p.
874
878
.
13.
Tomita
, 1959,
Soc. Chem. Engrs. Japan
,
23
, pp.
525
529
.
14.
Campbell
,
W. D.
, and
Slattery
,
J. C.
, 1963, “
Flow in the entrance of a tube
,”
ASME J. Basic Eng.
0021-9223, Series D,
85
(
1
), pp.
41
46
.
15.
Collins
,
M.
, and
Schowalter
,
W. R.
, 1963, “
Behaviour of non-Newtonian fluids in the inlet region of a channel
,”
AIChE J.
0001-1541,
9
, pp.
98
102
.
16.
Hornbeck
,
R. W.
, 1964 “
Laminar flow in the entrance region of a pipe
,”
Appl. Sci. Res., Sect. A
0365-7132,
13
, pp.
224
236
.
17.
McComas
,
S. T.
, and
Eckert
,
E. R. G.
, 1965, “
Laminar pressure drop associated with the continuum entrance region and for slip flow in a circular tube
,”
ASME J. Appl. Mech.
0021-8936,
32
, p.
765
770
.
18.
Christiansen
,
E. B.
, and
Lemmom
,
H. E.
, 1965, “
Entrance region flow
,”
AIChE J.
0001-1541,
11
(
6
), pp.
995
999
.
19.
Vrentas
,
J. S.
,
Duda
J. L.
, and
Bargeron
,
K. G.
, 1966, “
Effect of Axial Diffusion of Vorticity on Flow Development in Circular Conduits
,”
AIChE J.
0001-1541,
12
, pp.
837
844
.
20.
McComas
,
S. T.
, 1967, “
Hydrodynamic entrance lengths for ducts of arbitrary cross section
,”
J. Basic Eng.
0021-9223,
89
, pp.
847
856
.
21.
Friedmann
,
M.
,
Gillis
,
J.
, and
Liron
,
N.
, 1968, “
Laminar flow in a pipe at low and moderate Reynolds numbers
,”
Appl. Sci. Res.
0003-6994,
19
(
6
), pp.
426
433
.
22.
Atkinson
,
B.
,
Brocklebank
,
M. P.
,
Card
C. C. H.
, and
Smith
,
J. M.
, 1969, “
Low Reynolds number developing flows
,”
AIChE J.
0001-1541,
15
, pp.
548
553
.
23.
Fargie
,
D.
, and
Martin
,
B. W.
, 1971, “
Developing laminar flow in a pipe of circular cross section
,”
Proc. R. Soc. London, Ser. A
1364-5021,
321
, pp.
461
476
.
24.
Chen
,
R. Y.
, 1973, “
Flow in the entrance region at low Reynolds numbers
,”
J. Fluids Eng.
0098-2202,
95
, pp.
153
158
.
25.
Gupta
,
R. C.
, 1977, “
Laminar flow in the entrance of a tube
,”
Appl. Sci. Res.
0003-6994,
33
, p.
1
10
.
26.
Durst
,
F.
,
Heim
,
U.
,
Ünsal
,
B.
, and
Kullik
,
G.
, 2003, “
Mass flow rate control system for time-dependent laminar and turbulent flow investigations
,”
Meas. Sci. Technol.
0957-0233,
14
, p.
893
.
27.
Ferziger
,
J. H.
, and
Perić
,
M.
, 1999,
Computational Methods for Fluid Dynamics
,
2nd ed.
,
Springer
, Berlin.
28.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
, WA, D.C.
29.
Stone
,
H. L.
, 1968, “
Iterative solution of implicit approximations of multidimensional partial differential equations
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
5
, pp.
530
541
.
30.
Churchill
,
S. W.
, and
Usagi
,
R.
, 1972, “
A general expression for the correlation of rates of heat transfer and other phenomenon
,”
AIChE J.
0001-1541,
18
, pp.
1121
1132
.
This content is only available via PDF.
You do not currently have access to this content.