When requiring quantitative data on delta wing vortices for design purposes, low-speed results have often been extrapolated to configurations intended for supersonic operation. This practice stems from a lack of database in high-speed flows due to measurement difficulties. In the present paper an attempt is made to examine this practice by comparing data from an incompressible flow experiment designed specifically to correspond to an earlier experiment in supersonic flows. The comparison is made for a 75° sweptback delta wing at angles of attack of 7° and 12°. For the incompressible flow, detailed flow-field properties including vorticity and turbulence characteristics are obtained by hot-wire and pressure probe surveys. The results are compared, wherever possible, with available data from the earlier Mach 2.49 experiment. The results indicate that quantitative similarities exist in the distributions of total pressure and swirl velocities. Qualitative similarities also exist in other properties, however, many differences are observed. The vortex core is smaller and rounded at low speed. At high speed, it is elongated in the spanwise direction near the trailing edge but goes through “axis switching” within a short distance downstream. The vortex is located farther outboard, i.e., the spacing between the two legs of the vortex pair is larger, at low speed. The axial velocity distribution within the core is significantly different in the two flow regimes. A “jet-like” profile, observed at low speed, either disappears or becomes “wake-like” at high speed. The axial velocity characteristics are examined in the light of an analytical model.

1.
Spreiter
,
J. R.
, and
Sacks
,
A. H.
, 1951, “
The Rolling up of the Trailing Vortex Sheet and its Effect on the Downwash Behind Wings
,”
J. Aeronaut. Sci.
0095-9812,
18
, pp.
21
32
.
2.
Hummel
,
D.
, 1978, “
On the Vortex Formation Over a Slender Wing at Large Angles of Incidence
,”
High Angle of Attack Aerodynamics
, AGARD-CP-247, pp.
13.1
13.17
.
3.
Hiremath
,
B. M.
,
Holla
,
V. S.
, and
Govindaraju
,
S. P.
, 1984, “
Study of Flow-Field in the Near Wake of Delta Wings
,”
The Journal of Aeronautical Society of India
,
36
, pp.
17
27
.
4.
Kedzie
,
C. R.
, and
Griffin
,
K. E.
, 1983, “
Experimental Measurements of Wake Characteristics of Low Aspect-Ratio Delta and Flapped-Plate Planforms
,” USAFA-TN-83-6.
5.
Carcaillet
,
R.
,
Manie
,
F.
,
Pagan
,
D.
, and
Solignac
,
J. L.
, 1986, “
Leading Edge Vortex Flow Over a 75 Degree Swept Delta Wing—Experimental and Computational Results
,”
Proceedings of the 15th ICAS Congress
,
London
, UK, 7–12 September.
6.
Luckring
,
J. M.
, 2004, “
Reynolds Number, Compressibility, and Leading-Edge Bluntness Effects on Delta Wing Aerodynamics
,”
Proceedings of the 24th ICAS Congress
,
Yokohama
, Japan, 29 August–3 September.
7.
Sforza
,
P. M.
, 1998, “
Vortex-Plume Interaction Research
,” Fluid Dynamics Research on Supersonic Aircraft, NATO RTO-EN-4, pp.
9.1
9.20
.
8.
Wood
,
R.
,
Wilcox
,
F. J.
, Jr.
,
Bauer
,
S. X. S.
, and
Allen
,
J. M.
, 2000, “
High Speed Vortex Flows
,” AIAA Paper 2000-2215.
9.
Milanovic
,
I. M.
, and
Wang
,
F. Y.
, 2002, “
Experimental Studies on Compressible Leading-Edge Vortices
,”
Aerosp. Sci. Technol.
1270-9638,
6
, pp.
383
394
.
10.
Miller
,
D. S.
, and
Wood
,
R. M.
, 1984, “
Leeside Flows Over Delta Wings at Supersonic Speeds
,”
J. Aircr.
0021-8669,
21
, pp.
680
686
.
11.
Seshadri
,
S. N.
, and
Narayan
,
K. Y.
, 1988, “
Possible Types of Flow on Lee-Surface of Delta Wings at Supersonic Speeds
,”
Aeronaut. J.
0001-9240,
92
, pp.
185
199
.
12.
Stanbrook
,
A.
, and
Squire
,
L. C.
, 1964, “
Possible Types of Flow at Swept Leading Edges
,”
Aeronaut. Q.
0001-9259,
15
, pp.
72
82
.
13.
Stromberg
,
A.
,
Henze
,
A.
,
Limberg
,
W.
, and
Krause
,
E.
, 1996, “
Investigation of Vortex Structures on Delta Wings
,”
Z. Flugwiss. Weltraumforsch.
0342-068X,
20
, pp.
71
79
.
14.
Erickson
,
G. E.
,
Peake
,
D. J.
,
Del Frate
,
J.
,
Skow
,
A. M.
, and
Malcolm
,
G. N.
, 1987, “
Water Facilities in Retrospect and Prospect—An Illuminating Tool for Vehicle Design
,” Aerodynamic and Related Hydrodynamic Studies Using Water Facilities, AGARD-CP-413, pp.
1.1
1.27
.
15.
Kraft
,
E. M.
, 1988, “
Vortex Flows
,” Boundary Layer Simulation and Control in Wind Tunnels, AGARD-AR-224,
338
355
.
16.
Örnberg
,
T.
, 1954, “
A Note on the Flow Around Delta Wings
,” Kungl Tekniska Högskolan Institutionen För Flygteknik KTH Aero TN 38.
17.
Rom
,
J.
, 1992, in
High Angle of Attack Aerodynamics: Subsonic, Transonic, and Supersonic Flows
,
Springer-Verlag
, New York, pp.
13
23
.
18.
Monnerie
,
B.
, and
Werlé
,
H.
, 1968, “
Study of Supersonic and Hypersonic Flow About a Slender Wing at an Angle of Attack
,” Hypersonic Boundary Layers and Flow Fields, AGARD-CP-30,
23.1
23.19
.
19.
Green
,
S. I.
, 1995,
Fluid Vortices
,
Kluwer Academic
, Dordrecht, the Netherlands, pp.
297
303
.
20.
Centolanzi
,
F. J.
, 1959, “
Measured and Theoretical Flow-Field Behind a Rectangular and a Triangular Wing up to High Angles of Attack at a Mach Number of 2.46
,” NASA TN D-92.
21.
Walker
,
H. J.
, and
Stivers
,
L. S.
, Jr.
, 1950, “
Investigation of the Downwash and Wake Behind a Triangular Wing of Aspect Ratio 4 at Subsonic and Supersonic Mach Numbers
,” NACA RM A50I14a.
22.
Wetzel
,
B. E.
, and
Pfyl
,
F. A.
, 1951, “
Measurements of Downwash and Sidewash Behind Cruciform Triangular Wings at Mach Number 1.4
,” NACA RM A51B20.
23.
Spahr
,
J. R.
, and
Dickey
,
R. R.
, 1953, “
Wind-Tunnel Investigation of the Vortex Wake and Downwash Field Behind Triangular Wings and Wing-Body Combinations at Supersonic Speeds
,” NACA RM A53D10.
24.
Ganzer
,
U.
, and
Szodruch
,
J.
, 1987, “
Vortex Formation over Delta, Double-Delta and Wave Rider Configurations at Supersonic Speeds
,” Aerodynamics of Hypersonic Lifting Vehicles, AGARD-CP-428, pp.
25.1
25.32
.
25.
Fellows
,
K. A.
, and
Carter
,
E. C.
, 1969, “
Results and Analysis of Pressure Measurements on Two Isolated Slender Wings and Slender Wing-Body Combinations at Supersonic Speeds, Vol. 1 Analysis
,” ARA Report No. 12.
26.
Craven
,
A. H.
, and
Alexander
,
A. J.
, 1963, “
An Investigation of Vortex Breakdown at Mach 2
,” Cranfield College of Aeronautics CoA Note Aero-158.
27.
Wendt
,
J.
, 1982, “
Compressibility Effects on Flows Around Simple Components
,” High Angle-of-Attack Aerodynamics, AGARD-LS-121, pp.
7.1
7.20
.
28.
Stallings
,
R. L.
, Jr.
, 1992, “
Low Aspect Ratio Wings at High Angles of Attack
,”
Tactical Missile Aerodynamics: General Topics
,
Progress in Astronautics and Aeronautics
, edited by
M. J.
Hemsch
,
141
, pp.
251
286
.
29.
Vorropoulos
,
G.
, and
Wendt
,
J.
, 1983, “
Laser Velocimetry Study of Compressible Effects on the Flow-Field of a Delta Wing
,” Aerodynamics of Vortical Type Flows in Three Dimensions, AGARD-CP-342, pp.
9.1
9.13
.
30.
McGregor
,
I.
, 1962, “
Development of the Vapor Screen Method of Flow Visualization in a 3ft.×3ft. supersonic tunnel
,”
Flow Visualization in Wind Tunnels Using Indicators
, AGARDograph 70, pp.
115
164
.
31.
Foss
,
J. K.
, and
Zaman
,
K. B. M. Q.
, 1999, “
Large- and Small-Scale Vortical Motion in a Shear Layer Perturbed by Tabs
,”
J. Fluid Mech.
0022-1120,
382
, pp.
307
329
.
32.
Milanovic
,
I. M.
, and
Kalkhoran
,
I. M.
, 2001, “
Vortex-Wake Measurements of a Delta Wing in a Supersonic Stream
,”
J. Aircr.
0021-8669,
38
, pp.
315
325
.
33.
Milanovic
,
I. M.
, and
Kalkhoran
,
I. M.
, 2002, “
Measurements of Leading-Edge Vortices on a 75° Delta Platform Wing at M=2.5
,”
Aeronaut. J.
0001-9240,
106
, pp.
39
49
.
34.
El-Ramly
,
Z.
, and
Rainbird
,
W. J.
, 1977, “
Effect of Simulated Jet Engines on the Flow Field Behind a Swept-Back Wing
,”
J. Aircr.
0021-8669,
14
, pp.
343
349
.
35.
Brodetsky
,
M. D.
, and
Shevchenko
,
A. M.
, 1991, “
Some Features of a Separated Flow and Supersonic Vortex Structure at the Leeside of a Delta Wing
,” Separated Flows and Jets, edited by
V. V.
Kozlov
and
A. V.
Dovgal
, IUTAM Symposium Novosibirsk,
Springer-Verlag
, Berlin Heidelberg.
36.
Délery
,
J.
,
Horowitz
,
E.
,
Leuchter
,
O.
, and
Solignac
,
J.-L.
, 1984, “
Fundamental Studies on Vortex Flows
,”
Rech. Aerosp.
0034-1223,
2
, pp.
1
24
.
37.
Nedungadi
,
A.
, and
Lewis
,
M. J.
, 1996, “
Computational Study of the Flow-Fields Associated With Oblique Shock/Vortex Interactions
,”
AIAA J.
0001-1452,
34
, pp.
2545
2553
.
38.
Mahesh
,
K.
, 1996, “
A Model for the Onset of Breakdown in an Axisymmetric Compressible Vortex
,”
Phys. Fluids
1070-6631,
8
, pp.
3338
3345
.
39.
Kalkhoran
,
I. M.
, and
Smart
,
M. K.
, 2000, “
Aspects of Shock Wave-Induced Vortex Breakdown
,”
Prog. Aerosp. Sci.
0376-0421,
36
, pp.
63
95
.
40.
Thompson
,
D. H.
, 1975, “
Experimental Study of Axial Flow in Wing Tip Vortices
,”
J. Aircr.
0021-8669,
12
, pp.
910
911
.
41.
Devenport
,
W. J.
,
Rife
,
M. C.
,
Liapis
,
S. J.
, and
Follin
,
G. J.
, 1996, “
The Structure and Development of a Wing-Tip Vortex
,”
J. Fluid Mech.
0022-1120,
312
, pp.
67
106
.
42.
Chow
,
J. S.
,
Zilliac
,
G. G.
, and
Bradshaw
,
P.
, 1997, “
Mean and Turbulence Measurements in the Near Field of a Wingtip Vortex
,”
AIAA J.
0001-1452,
35
, pp.
1561
1567
.
43.
Anderson
,
E. A.
, and
Lawton
,
T. A.
, 2003, “
Correlation Between Vortex Strength and Axial Velocity in a Trailing Vortex
,”
J. Aircr.
0021-8669,
40
, pp.
699
704
.
44.
Batchelor
,
G. K.
, 1964, “
Axial Flow in Trailing Line Vortices
,”
J. Fluid Mech.
0022-1120,
20
, pp.
645
658
.
45.
Wang
,
F. Y.
, and
Sforza
,
P. M.
, 1997, “
Near-Field Experiments on Tip Vortices at Mach 3.1
,”
AIAA J.
0001-1452,
35
, pp.
750
753
.
46.
Lee
,
M.
, and
Ho
,
C.-M.
, 1989, “
Vortex Dynamics of Delta Wings
,”
Frontiers in Experimental Fluid Mechanics
,
Springer-Verlag
, Berlin, pp.
365
427
.
47.
Rizetta
,
D. P.
, 1996, “
Numerical Investigation of Supersonic Wing-Tip Vortices
,”
AIAA J.
0001-1452,
34
, pp.
1023
1028
.
48.
Werlé
,
H.
, 1974, “
Le Tunnel Hydrodynamique au Service de la Recherche Aérospatiale
,” ONERA TP-156.
49.
Povinelli
,
L. A.
, 1974, “
Drag and Distribution Measurements of Single-Element Fuel Injectors for Supersonic Combustors
,” NASA TM X-3015.
You do not currently have access to this content.