The cavitating flow around a marine propeller is studied using an unstructured grid based Reynolds-averaged Navier-Stokes computational fluid dynamics method. A cavitation model based on a single-fluid multi-phase flow method is implemented in the Navier-Stokes solver. The proposed computational approach for cavitation is validated against a benchmark database for a cavitating hydrofoil as well as measured data for a cavitating marine propeller. The leading edge and mid-chord cavitation on the hydrofoil is reproduced well and shows good comparison with the well-known experimental data. The predicted noncavitating open water performance of the marine propeller geometry agrees well with the measured one. Finally, the cavitating propeller performance as well as cavitation inception and cavity shape are in good agreement with experimental measurements and observation. The overall results suggest that the present approach is practicable for actual cavitating propeller design procedures without lengthy preprocessing and significant preliminary knowledge of the flow field.

1.
Kerwin
,
J. E.
,
Kinnas
,
S. A.
,
Wilson
,
M. B.
, and
McHugh
,
J.
, 1986, “
Experimental and Analytical Techniques for the Study of Unsteady Propeller Sheet Cavitation
,”
Proc. 16th Symposium on Naval Hydrodynamics
, Berkeley, CA.
2.
Lee
,
C.-S.
, 1979, “
Prediction of Steady and Unsteady Performance of Marine Propellers with or without Cavitation by Numerical Lifting Surface Theory
,” Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, MA.
3.
Kinnas
,
S. A.
, and
Fine
,
N. E.
, 1993, “
A Numerical Nonlinear Analysis of the Flow Around Two- and Three-Dimensional Partially Cavitating Hydrofoils
,”
J. Fluid Mech.
0022-1120,
254
, pp.
151
181
.
4.
Deshpande
,
M.
,
Feng
,
J.
, and
Merkle
,
C. L.
, 1994, “
Cavity Flow Predictions Based on the Euler Equations
,”
ASME J. Fluids Eng.
0098-2202,
116
(
1
), pp.
36
44
.
5.
Kinnas
,
S. A.
,
Choi
,
J.-K.
,
Lee
,
H.
,
Young
,
Y. L.
,
Gu
,
H.
,
Kakar
,
K.
, and
Natarajan
,
S.
, 2002, “
Prediction of Cavitation Performance of Single or Multi-Component Propulsors and Their Interaction with the Hull
,”
Soc. Nav. Archit. Mar. Eng., Trans.
0081-1661,
110
, pp.
215
244
.
6.
Kubota
,
A.
,
Kato
,
H.
, and
Yamaguchi
,
H.
, 1992, “
A New Modeling of Cavitating Flows: A Numerical Study of Unsteady Cavitation on a Hydrofoil Section
,”
J. Fluid Mech.
0022-1120,
240
, pp.
59
96
.
7.
Chen
,
Y.
, and
Heister
,
S. D.
, 1995, “
Two Phase Modeling of Cavitated Flows
,”
Comput. Fluids
0045-7930,
24
, pp.
799
809
.
8.
Ahuja
,
V.
,
Hosangadi
,
A.
,
Ungewitter
,
A.
, and
Dash
,
S. M.
, 1999, “
A Hybrid Unstructured Mesh Solver for Multi-Fluid Mixtures
,” AIAA paper 99-3330,
Proc. 14th AIAA Computational Fluid Dynamics Conference
, Norfolk, VA.
9.
Kunz
,
R. F.
,
Boger
,
D. A.
,
Stinebring
,
D. R.
,
Chyczewski
,
T. S.
,
Lindau
,
J. W.
,
Gibeling
,
H. J.
,
Venkateswaran
,
S.
, and
Govindan
,
T. R.
, 2000, “
A Preconditioned Navier-Stokes Method for Two-Phase Flows with Application to Cavitation Prediction
,”
Comput. Fluids
0045-7930,
29
, pp.
849
875
.
10.
Senocak
,
I.
, and
Shyy
,
W.
, 2002, “
A Pressure-Based Method for Turbulent Cavitating Flow Computations
,”
J. Comput. Phys.
0021-9991,
176
, pp.
363
383
.
11.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H. Y.
, and
Jiang
,
Y.
, 2002, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
0098-2202,
124
(
3
), pp.
617
624
.
12.
Grogger
,
H. A.
, and
Alajbegovic
,
A.
, 1998, “
Calculation of the Cavitating Flow in Venturi Geometries Using Two Fluid Model
,” ASME paper FEDSM98-5295,
Proc. 1998 ASME Fluids Engineering Division Summer Meeting
, Washington, DC.
13.
Venkateswaran
,
S.
,
Lindau
,
J. W.
,
Kunz
,
R. F.
, and
Merkle
,
C. L.
, 2002, “
Computation of Multiphase Mixture Flows with Compressibility Effects
,”
J. Comput. Phys.
0021-9991,
180
, pp.
54
77
.
14.
Lindau
,
J. W.
,
Venkateswaran
,
S.
,
Kunz
,
R. F.
, and
Merkle
,
C. L.
, 2003, “
Computation of Compressible Multiphase Flows
,” AIAA paper 2003-1285,
Proc. 41st AIAA Aerospace Sciences Meeting and Exhibit
, Reno, NV.
15.
Lindau
,
J. W.
,
Medvitz
,
R. B.
,
Boger
,
D. A.
, and
Kunz
,
R. F.
, 2003, “
Propeller Cavitation Breakdown Analysis
,” ASME paper FEDSM2003-45407,
Proc. 4th ASME-JSME Joint Fluids Engineering Conference
, Honolulu, HI.
16.
Manninen
,
M.
,
Taivassalo
,
V.
, and
Kallio
,
S.
, 1996, “
On the Mixture Model for Multiphase Flow
,” VTT Publications 288, Technical Research Centre of Finland, Valtion Teknillinen Tutkimuskeskus, Espoo, Finland.
17.
Schiller
,
L.
, and
Naumann
,
Z.
, 1933, “
A Drag Coefficient Correlation
,”
Z. Ven. Dtsch. Ing.
,
77
(
12
), pp.
318
320
.
18.
Wilcox
,
D. C.
, 1998,
Turbulence Modeling for CFD
,
2nd ed.
,
DCW Industries, Inc.
, La Canada, CA.
19.
Kim
,
S.-E.
,
Rhee
,
S. H.
, and
Cokljat
,
D.
, 2003, “
Application of modern Turbulence Models to Vortical Flow Around a 6:1 Prolate Spheroid at Incidence
,” AIAA paper 2003-0429,
Proc. 41st Aerospace Sciences Meeting and Exhibit
, Reno, NV.
20.
Rhee
,
S. H.
, and
Joshi
,
S.
, 2005, “
Computational Validation for Flow around a Marine Propeller Using Unstructured Mesh Based Navier-Stokes Solver
,” accepted for publication in the JSME Int. J. Ser. B. Fluids Therm. Eng.
21.
Hinze
,
J. O.
, 1975,
Turbulence
,
2nd ed.
,
McGraw-Hill
, New York, NY.
22.
Singhal
,
A. K.
,
Vaidya
,
N.
, and
Leonard
,
A. D.
, 1997, “
Multi-Dimensional Simulation of Cavitating Flows Using a PDF Model of Phase Change
,” ASME paper FEDSM97-3272,
Proc. ASME FED Meeting
, Vancouver, Canada.
23.
Watanabe
,
T.
, 2004, “
Development of a Marine Propeller Simulator Considering Wake and Cavitation
,” M.S. thesis, University of Tokyo, Tokyo, Japan (in Japanese).
24.
Kim
,
S.-E.
,
Mathur
,
S. R.
,
Murthy
,
J. Y.
, and
Choudhury
,
D.
, 1998, “
A Reynolds-Averaged Navier-Stokes Solver Using Unstructured Mesh Based Finite-Volume Scheme
,” AIAA paper 98-0231,
Proc. 36th AIAA Aerospace Sciences Meeting and Exhibit
, Reno, NV.
25.
Shen
,
Y. T.
, and
Dimotakis
,
P. E.
, 1989, “
The Influence of Surface Cavitation on Hydrodynamic Forces
,”
Proc. 22nd American Towing Tank Conference
, St. John’s, Canada.
26.
Yamaguchi
,
H.
,
Kato
,
H.
,
Kamijo
,
A.
, and
Maeda
,
M.
, 1988, “
Development of Marine Propellers with Better Cavitation Performance—2nd Report: Effect of Design Lift Coefficient for Propellers with Flat Pressure Distribution
,”
J. Soc. Naval Architects Jpn
,
163
, pp.
48
65
.
27.
Roache
,
P. J.
, 1998,
Verification and Validation in Computational Science and Engineering
,
Hermosa Publishers
, Albuquerque, NM.
28.
Funeno
,
I.
, 2002, “
On Viscous Flow around Marine Propellers—Hub Vortex and Scale Effect
,”
J. Kansai Soc. Naval Architects, Jpn
,
238
, pp.
17
27
.
You do not currently have access to this content.