A novel physically based mass conservation model is developed in the framework of a level set method, as an alternative to the Heaviside function based formulation classically employed in the literature. In the proposed “volume fraction based level set approach,” expressions for volume fraction function for each interfacial computational cell are developed, and are subsequently correlated with the corresponding level set functions. The volume fraction function, derived from a physical basis, is found to be mathematically analogous to the Heaviside function, except for a one-dimensional case. The results obtained are compared with the benchmark experimental and numerical results reported in the literature. Finally, transient evolution of a circular bubble in a developing shear flow and rising bubbles in a static fluid, are critically examined. The Cox angle and the deformation parameter characterizing the bubble evolution are critically examined. An excellent satisfaction of the mass conservation requirements is observed in all case studies undertaken.

1.
Patankar
,
S. V.
, 1992, “
Review of Calculation Methods for Single-Phase and Multiphase Flows
,” UMSI Report No. 92/53.
2.
Unverdi
,
S.
, and
Tryggvasan
,
G.
, 1992, “
A Front Tracking Method for Viscous, Incompressible, Multi-Fluid Flows
,”
J. Comput. Phys.
0021-9991,
100
, pp.
25
37
.
3.
Hirt
,
C. W.
, and
Nichols
,
B. D.
, 1981, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
0021-9991,
39
, pp.
201
225
.
4.
Osher
,
S.
, and
Sethian
,
J. A.
, 1988, “
Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
0021-9991,
79
, pp.
12
49
.
5.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
, 1994, “
A Level Set Approach For Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
0021-9991,
114
, pp.
146
159
.
6.
Chang
,
Y. C.
,
Hou
,
T. Y.
,
Merriman
,
B.
, and
Osher
,
S.
, 1996, “
A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows
,”
J. Comput. Phys.
0021-9991,
124
, pp.
449
464
.
7.
Kaliakatos
,
C.
, and
Tsangaris
,
S.
, 2000, “
Motion of Deformable Drops in Pipes and Channels Using Navier–Stokes Equations
,”
Int. J. Numer. Methods Fluids
0271-2091,
34
, pp.
609
626
.
8.
Sussman
,
M.
,
Fatemi
,
E.
,
Smereka
,
P.
, and
Osher
,
S.
, 1998, “
An Improved Level Set Method for Incompressible Two-Phase Flows
,”
Comput. Fluids
0045-7930,
27
(
5-6
), pp.
663
680
.
9.
Bourlioux
,
A.
, 1995, “
A Coupled Level-Set Volume-of-Fluid Algorithm for Tracking Material Interfaces
,”
Proc. 6th Int. Symp. on Computational Fluid Dynamics
,
Lake Tahoe
, CA, pp.
15
22
.
10.
Sussman
,
M.
, and
Puckett
,
G.
, 2000, “
A Coupled Level Set and Volume of Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows
,”
J. Comput. Phys.
0021-9991,
162
, pp.
301
337
.
11.
Son
,
G.
, and
Hur
,
N.
, 2002, “
A Coupled Level Set And Volume-Of-Fluid Method for the Buoyancy-Driven Motion of Fluid Particles
,”
Numer. Heat Transfer, Part B
1040-7790,
42
, pp.
523
542
.
12.
Sussman
,
M.
, 2003, “
A Second Order Coupled Level Set And Volume of Fluid Method For Computing Growth And Collapse of Vapor Bubbles
,”
J. Comput. Phys.
0021-9991,
187
, pp.
110
136
.
13.
Shin
,
S.
, and
Juric
,
D.
, 2002, “
Medeling Three-Dimensional Multiphase Flow Using a Level Contour Reconstruction Method for Front Tracking Without Connectivity
,”
J. Comput. Phys.
0021-9991,
180
, pp.
427
470
.
14.
Juric
,
D.
, and
Tryggvason
,
G.
, 1998, “
Computations of Boiling Flows
,”
Int. J. Multiphase Flow
0301-9322,
24
, pp.
387
.
15.
Enright
,
D.
,
Fedkiw
,
R.
,
Ferziger
,
J.
, and
Mitchell
,
I.
, 2002, “
A Hybrid Particle Levelset Method for Improved Interface Capturing
,”
J. Comput. Phys.
0021-9991,
183
, pp.
83
116
.
16.
Patankar
,
S. V.
, 1981,
Numerical Heat Transfer and Fluid Flow
,
McGraw–Hill
, New York.
17.
Martin
,
J. C.
, and
Moyce
,
W. J.
, 1952, “
An Experimental Study of the Collapse of Liquid Columns on a Rigid Horizontal Plane
,”
Philos. Trans. R. Soc. London
0962-8428,
244
, pp.
312
324
.
18.
Koshizuka
,
S.
,
Tamako
,
H.
, and
Oka
,
Y.
, 1995, “
A Particle Method for Incompressible Viscous Flow with Fluid Fragmentation
,”
Comput. Fluid Dyn. J.
0918-6654,
4
, pp.
29
46
.
19.
Tsakalos
,
V. T.
,
Navard
,
P.
, and
Peuvrel-Disdier
,
E.
, 1998, “
Deformation and Breakup Mechanisms of Single Drops During Shear
,”
J. Rheol.
0148-6055
42
, pp.
1403
1417
.
You do not currently have access to this content.