Oscillatory incompressible fluid flow with a free surface occurs in an inkjet print head. Due to complex physical fluid behavior, numerical simulations have been a common approach to characterize the pressure and velocity development in time and space. However, the cost of a numerical approach is high in terms of computational time such that approximate analytic approaches have been developed. In this paper, an approximate analytic solution for a tapered nozzle section is described with a proper downstream boundary condition and the physical behavior of the meniscus deformation is modeled with a simple “window” theory.
Issue Section:
Technical Papers
1.
Antohe
, B. V.
, and Wallace
, D. B.
, 2002
, “Acoustic Phenomena in a Demand Mode Piezoelectric Ink Jet Printer
,” J. Imaging Sci. Technol.
, 46
(5
), pp. 409
–414
.2.
Khaskia, A. M., 2002, “Static and Dynamic Modeling of Piezoelectric Drivers in Drop on Demand Printing,” FEMCI Workshop, Maryland, USA.
3.
Yeh, J. T., 2000, “Simulation and Industrial Applications of Inkjet,” Proceedings of the 7th National Computational Fluid Dynamics Conference, Kenting, Taiwan.
4.
Yeh, J. T., 2001, “A VOF-FEM and Coupled Inkjet Simulation,” Proceedings of ASME Fluids Engineering Division Summer Meeting, The American Society of Mechanical Engineers, New York, USA.
5.
Pan
, F.
, Kubby
, J.
, and Chen
, J.
, 2002
, “Numerical Simulation of Fluid–Structure Interaction in a MEMS Diaphragm Drop Ejector
,” J. Micromech. Microeng.
, 12
, pp. 70
–76
.6.
Fromm
, J. E.
, 1984
, “Numerical Calculation of the Fluid Dynamics of Drop-On-Demand Jets
,” IBM J. Res. Dev.
, 28
(3
), pp. 322
–333
.7.
Shield
, T. W.
, Bogy
, D. B.
, and Talke
, F. E.
, 1986
, “A Numerical Comparison of One-Dimensional Fluid Jet Models Applied to Drop-On-Demand Printing
,” J. Comput. Phys.
, 67
, pp. 327
–347
.8.
Shield
, T. W.
, Bogy
, D. B.
, and Talke
, F. E.
, 1987
, “Drop Formation by DOD Ink-Jet Nozzles—A Comparison of Experiment and Numerical Simulation
,” IBM J. Res. Dev.
, 31
(1
), pp. 96
–110
.9.
Adams
, R. L.
, and Roy
, J.
, 1986
, “A One-Dimensional Numerical Model of a Drop-On-Demand Ink Jet
,” ASME J. Appl. Mech.
, 53
, pp. 193
–197
.10.
Liou
, T. M.
, Shih
, K. C.
, Chau
, S. W.
, and Chen
, S. C.
, 2002
, “Three-Dimensional Simulations of the Droplet Formation During the Inkjet Printing Process
,” Int. Commun. Heat Mass Transfer
, 29
(8
), pp. 1109
–1118
.11.
Kyser
, E. L.
, Collins
, L. F.
, and Herbert
, N.
, 1981
, “Design of an Impulse Ink Jet
,” J. Appl. Photogr. Eng.
, 7
(3
), pp. 73
–79
.12.
Wallace, D. B., 1989, “A Method of Characteristics Model of a Drop-on-Demand Ink-Jet Device Using an Integral Method Drop Formation Model,” Proc. ASME Winter Ann. Meeting, San Francisco, CA, USA.
13.
Chen
, P. H.
, Peng
, H. Y.
, Liu
, H. Y.
, Chang
, S. L.
, Wu
, T. I.
, and Cheng
, C. H.
, 1999
, “Pressure Response and Droplet Ejection of a Piezoelectric Inkjet Printhead
,” Int. J. Mech. Sci.
, 41
(2
), pp. 235
–248
.14.
Wilkes
, E. D.
, Phillips
, S. D.
, and Basaran
, O. A.
, 1999
, “Computational and Experimental Analysis of Dynamics of Drop Formation
,” Phys. Fluids
, 11
(12
), pp. 3577
–3598
.15.
Teng
, K. F.
, 1988
, “A Mathematical Model of Impulse Jet Mechanism
,” Math. Comput. Modell.
, 11
, pp. 751
–753
.16.
Koltay, P., Moosmann, C., Litterst, C., Streule, W., Birkenmeier, B., and Zengerle, R., 2002, “Modelling Free Jet Ejection on a System Level—an Approach for Microfluidics,” Technical Proceedings of the 2002 International Conference on Modeling and Simulation of Microsystems, San Juan, Puerto Rico, pp. 112–115.
17.
Koltay, P., Moosmann, C., Litterst, C., Streule, W., and Zengerle, R., 2002, “Simulation of a Micro Dispenser Using Lumped Models,” Technical Proceedings of the 2002 International Conference on Modeling and Simulation of Microsystems, San Juan, Puerto Rico, pp. 170–173.
18.
Dijksman
, J. F.
, 1984
, “Hydrodynamics of Small Tubular Pumps
,” J. Fluid Mech.
, 139
, pp. 173
–191
.19.
Baek
, S. H.
, Jeong
, E. S.
, and Jeong
, S.
, 2000
, “Two-Dimensional Model for Tapered Pulse Tubes. Part 1: Theoretical Modeling and Net Enthalpy Flow
,” Cryogenics
, 40
, pp. 379
–385
.20.
Rembe
, C.
, Wiesche
, S.
, and Hofer
, E. P.
, 2000
, “Thermal Ink Jet Dynamics: Modeling, Simulation, and Testing
,” Microelectron. Reliab.
, 40
, pp. 525
–532
.21.
Hart
, V. G.
, and Shi
, J.
, 1995
, “Governing Equations for Wave Propagation in Prestressed Joined Dissimilar Elastic Tubes Containing Fluid Flow: With an Example for a Tapered Section
,” Int. J. Eng. Sci.
, 33
(8
), pp. 1121
–1138
.22.
Chakravarty
, S.
, and Mandal
, P. K.
, 2000
, “Two-Dimensional Blood Flow Through Tapered Arteries Under Stenotic Conditions
,” Int. J. Non-Linear Mech.
, 35
, pp. 779
–793
.23.
Bogy
, D. B.
, and Talke
, F. E.
, 1984
, “Experimental and Theoretical Study of Wave Propagation Phenomena in Drop-On-Demand Ink Jet Devices
,” IBM J. Res. Dev.
, 28
(3
), pp. 314
–321
.24.
Meinhart
, C. D.
, and Zhang
, H.
, 2000
, “The Flow Structure Inside a Microfabricated Inkjet Printhead
,” J. Microelectromech. Syst.
, 9
(1
), pp. 67
–75
.25.
Pierce, A. D., 1989, Acoustics: An Introduction to Its Physical Principles and Applications, The Acoustical Society of America, New York, USA, p. 348.
26.
Rossing, T. D., and Fletcher, N. H., 1998, The Physics of Musical Instruments, 2nd ed., Springer, New York, USA, p. 200.
27.
Shin
, D. Y.
, Grassia
, P.
, and Derby
, B.
, 2003
, “Oscillatory Limited Compressible Fluid Flow Induced by the Radial Motion of a Thick-Walled Piezoelectric Tube
,” J. Acoust. Soc. Am.
, 114
(3
), pp. 1314
–1321
.28.
Benjamin
, T. B.
, and Ursell
, F.
, 1954
, “The Stability of the Plane Free Surface of a Liquid in Vertical Periodic Motion
,” Proc. R. Soc. London, Ser. A
, 225
, pp. 505
–515
.29.
Valha
, J.
, and Kubie
, J.
, 1996
, “Stability of a Gas–Liquid Interface in a Periodic Vertical Motion
,” Chem. Eng. Sci.
, 51
(22
), pp. 4997
–5006
.30.
Technical Publication TP-226: Properties of Piezoelectricity Ceramics, Morgan Electro Ceramics, http://www.morganelectroceramics.com/pdfs/tp226.pdf
31.
Chen
, A. U.
, and Basaran
, O. A.
, 2002
, “A New Method for Significantly Reducing Drop Radius Without Reducing Nozzle Radius in Drop-On-Demand Drop Production
,” Phys. Fluids
, 14
(1
), pp. L1–L4
L1–L4
.Copyright © 2005
by ASME
You do not currently have access to this content.