Direct numerical simulation of a fully developed turbulent channel flow has been carried out at three Reynolds numbers, 180, 395, and 640, based on the friction velocity and the channel half width, in order to investigate very large-scale structures and their effects on the wall shear-stress fluctuations. It is shown that very large-scale structures exist in the outer layer and that they certainly contribute to inner layer structures at high Reynolds number. Moreover, it is revealed that very large-scale structures exist even in the wall shear-stress fluctuations at high Reynolds number, which are essentially associated with the very large-scale structures in the outer layer.

Issue Section:

Technical Papers
1.

Choi

, H.

Moin

, P.

1990

, “On the Space-Time Characteristics of Wall Pressure Fluctuations

,” Phys. Fluids A

, 2

, pp. 1450

–1460

.2.

Farabee

, T. M.

Casarella

, M. J.

1991

, “Spectral Features of Wall Pressure Fluctuations Beneath Turbulent Boundary Layers

,” Phys. Fluids A

, 3

, pp. 2410

–2420

.3.

Jeon

, S.

Choi

, H.

Yoo

, J. Y.

Moin

, P.

1999

, “Space-Time Characteristics of the Wall Shear-Stress Fluctuations in a Low-Reynolds-Number Channel Flow

,” Phys. Fluids

, 11

, pp. 3084

–3094

.4.

Kim

, J.

1989

, “On the Structure of Pressure Fluctuations in Simulated Turbulent Channel Flow

,” J. Fluid Mech.

, 205

, pp. 421

–451

.5.

Bullock

, K. J.

Cooper

, R. E.

Abernathy

, F. H.

1978

, “Structural Similarity in Radial Correlations and Spectra of Longitudinal Velocity Fluctuations in Pipe Flow

,” J. Fluid Mech.

, 88

, pp. 585

–608

.6.

Naguib

, A. M.

Wark

, C. E.

1992

, “An Investigation of Wall-Layer Dynamics Using a Combined Temporal Filtering and Correlation Technique

,” J. Fluid Mech.

, 243

, pp. 541

–560

.7.

Hites, M. H., 1997, “Scaling of High-Reynolds Number Turbulent Boundary Layers in the National Diagnostic Facility,” Ph.D. thesis, Illinois Institute of Technology.

8.

Kim

, K. C.

Adrian

, R. J.

1999

, “Very Large-Scale Motion in the Outer Layer

,” Phys. Fluids

, 11

, pp. 417

–422

.9.

O¨sterlund, J. M., 1999, “Experimental Studies of Zero Pressure-Gradient Turbulent Boundary Layer Flow,” Ph.D. thesis, Department of Mechanics, Royal Institute of Technology, Stockholm.

10.

Metzger

, M. M.

Klewicki

, J. C.

2001

, “A Comparative Study of Near-Wall Turbulence in High and Low Reynolds Number Boundary Layers

,” Phys. Fluids

, 13

, pp. 692

–701

.11.

Antonia

, R. A.

Kim

, J.

1994

, “Low-Reynolds-Number Effects on Near-Wall Turbulence

,” J. Fluid Mech.

, 276

, pp. 61

–80

.12.

Moser

, R. D.

Kim

, J.

Mansour

, N. N.

1999

, “Direct Numerical Simulation of Turbulent Channel Flow up to Reτ=590,

” Phys. Fluids

, 11

, pp. 943

–945

.13.

Abe

, H.

Kawamura

, H.

Matsuo

, Y.

2001

, “Direct Numerical Simulation of a Fully Developed Turbulent Channel Flow With Respect to the Reynolds Number Dependence

,” ASME J. Fluids Eng.

, 123

, pp. 382

–393

.14.

del A´lamo, J. C., and Jime´nez, J., 2001, “Direct Numerical Simulation of the Very Anisotropic Scales in a Turbulent Channel,” Center for Turbulence Research Annual Research Briefs, pp. 329–341.

15.

del A´lamo

, J. C.

Jime´nez

, J.

2003

, “Spectra of the Very Large Anisotropic Scales in Turbulent Channels

,” Phys. Fluids

, 15

, pp. L41–L44

L41–L44

.16.

Abe, H., and Kawamura, H., 2002, “A Study of Turbulence Thermal Structure in a Channel Flow Through DNS up to Reτ=640 With Pr=0.025 and 0.71,” Proceedings of 9th European Turbulence Conference, pp. 399–402.

17.

Jime´nez, J., Flores, O., and Garcı´a-Villalba, M., 2001, “The Large-Scale Organization of Autonomous Turbulent Wall Regions,” Center for Turbulence Research Annual Research Briefs, pp. 317–327.

18.

Dukowics

, J. K.

Dvinsky

, A. S.

1992

, “Approximate Factorization as a High Order Splitting for the Implicit Incompressible Flow Equations

,” J. Comp. Physiol.

, 102

, pp. 336

–347

.19.

Morinishi

, Y.

Lund

, T. S.

Vasilyev

, O. V.

Moin

, P.

1998

, “Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow

,” J. Comp. Physiol.

, 143

, pp. 90

–124

.20.

Jime´nez, J., 1998, “The Largest Scales of Turbulent Wall Flows,” Center for Turbulence Research Annual Research Briefs, pp. 137–154.

21.

Kawamura, H., Abe, H., and Shingai, K., 2000, “DNS of Turbulence and Heat Transport in a Channel Flow With Different Reynolds and Prandtl Numbers and Boundary Conditions,” Proceedings of 3rd International Symposium Turbulence, Heat and Mass Transfer, pp. 15–32.

22.

Hussain

, A. K. M. F.

Reynolds

, W. C.

1975

, “Measurements in Fully Developed Turbulent Channel Flow

,” J. Fluids Eng.

, 97

, pp. 568

–580

.23.

Spalart

, P. R.

1988

, “Direct Simulation of a Turbulent Boundary Layer up to Rθ=1410,

” J. Fluid Mech.

, 187

, pp. 61

–98

.24.

Falco

, R. E.

1977

, “Coherent Motions in the Outer Region of Turbulent Boundary Layers

,” Phys. Fluids

, 20

, pp. S124–SS132

S124–SS132

.25.

Brown

, G. L.

Thomas

, A. S. W.

1977

, “Large Structure in a Turbulent Boundary Layer

,” Phys. Fluids

, 20

, pp. S243–S252

S243–S252

.26.

Adrian

, R. J.

Meinhart

, C. D.

Tomkins

, C. D.

2000

, “Vortex Organization in the Outer Layer Region of the Turbulent Boundary Layer

,” J. Fluid Mech.

, 422

, pp. 1

–54

.27.

Liu

, Z.

Adrian

, R. J.

Hanratty

, T. J.

2001

, “Large-Scale Modes of Turbulent Channel Flow: Transport and Structure

,” J. Fluid Mech.

, 448

, pp. 53

–80

.28.

Smith

, C. R.

Metzler

, S. P.

1983

, “The Characteristics of Low-Speed Streaks in the Near-Wall Region of a Turbulent Boundary Layer

,” J. Fluid Mech.

, 129

, pp. 27

–54

.29.

Nakagawa

, H.

Nezu

, I.

1981

, “Structure of Space-Time Correlations of Bursting Phenomena in an Open-Channel Flow

,” J. Fluid Mech.

, 104

, pp. 1

–43

.30.

Perry

, A. E.

Henbest

, S.

Chong

, M. S.

1986

, “A Theoretical and Experimental Study of Wall Turbulence

,” J. Fluid Mech.

, 165

, pp. 163

–199

.31.

Kuroda, A., Kasagi, N., and Hirata, M., 1989, “A Direct Numerical Simulation of the Fully Developed Turbulent Channel Flow at a Very Low Reynolds Number,” Proceedings of the International Symposium on Computational Fluid Dynamics, Nagoya, pp. 1174–1179.

32.

Gilbert, N., and Kleiser, L., 1991, “Turbulence Model Testing With the Aid of Direct Numerical Simulation Results,” Proceedings of the Eighth Symposium on Turbulent Shear Flows, TU of Mu¨nich, pp. 26.1.1–26.1.6.

33.

Kuroda, A., Kasagi, N., and Hirata, M., 1993, “Direct Numerical Simulation of the Turbulent Plane Couette-Poiseuille Flows: Effect of Mean Shear on the Near Wall Turbulence Structures,” Proceedings of the Ninth Symposium on Turbulent Shear Flows, Kyoto, pp. 8.4.1–8.4.6.

34.

Gu¨nther

, A.

Papavassiliou

, D. V.

Warholic

, M. D.

Hanratty

, T. J.

1998

, “Turbulent Flow in a Channel at a Low Reynolds Number

,” Exp. Fluids

, 25

, pp. 503

–511

.35.

Fischer

, M.

Jovanovic´

, J.

Durst

, F.

2001

, “Reynolds Number Effects in the Near-Wall Region of Turbulent Channel Flows

,” Phys. Fluids

, 13

, pp. 1755

–1767

.36.

Alfredsson

, P. H.

Johansson

, A. V.

Haritonidis

, J. H.

Eckelmann

, H.

1988

, “The Fluctuating Wall-Shear Stress and the Velocity Field in the Viscous Sublayer

,” Phys. Fluids

, 31

, pp. 1026

–1033

.37.

Wietrzak

, A.

Lueptow

, R. M.

1994

, “Wall Shear Stress and Velocity in a Turbulent Axisymmetric Boundary Layer

,” J. Fluid Mech.

, 259

, pp. 191

–218

.38.

Nepomuceno

, H. G.

Lueptow

, R. M.

1997

, “Pressure and Shear Stress Measurements at the Wall in a Turbulent Boundary Layer on a Cylinder

,” Phys. Fluids

, 9

, pp. 2732

–2739

.39.

Robinson, S. K., 1991, “The Kinematics of Turbulent Boundary Layer Structure,” NASA TM, 103859.

40.

Komminaho

, J.

Lundbladh

, A.

Johansson

, A. V.

1996

, “Very Large Structures in Plane Turbulent Couette Flow

,” J. Fluid Mech.

, 320

, pp. 259

–285

.Copyright © 2004

by ASME

You do not currently have access to this content.