A full-size acrylic model of a rotary blood pump was developed in order to utilize Particle Image Velocimetry (PIV) to make measurements of the fluid velocities and turbulent stresses throughout the device. The development of an understanding of the hemodynamics within the blood pump is critical to the development and validation of computational models. A blood analog solution, consisting of sodium iodide solution and glycerin, was developed to match physiological kinematic viscosity. The refractive indecies of the fluid, the pump casing, and the impeller were matched to facilitate the use of PIV to make velocity measurements. Velocity measurements made in the volute exit/diffuser region are presented for pumps speeds of 3000–3850 rpm. At each speed data were obtained at a physiological pressure of 12 kPa and at a maximum flow condition. Four hundred data pairs were used for each resultant mean velocity vector value, representing greater than an order of magnitude more data pairs than reported previously in the literature on similar devices and resulting in velocity uncertainty levels of approximately ±2.9%.

1.
Stevenson
,
L. W.
, and
Kormos
,
R. L.
,
2001
, “
Mechanical Cardiac Support 2000: Current applications and future trial design
,”
J. Thorac. Cardiovasc. Surg.
,
121
, pp.
418
24
.
2.
Soundranayagam
,
S.
, and
Ramarajan
,
V.
,
1986
, “
Scale Effects in a Mixed Flow Pump: Part 2
,”
Proc. Inst. Mech. Eng.
,
200
, pp.
180
186
.
3.
Gopalakrishnan
,
S.
,
1999
, “
Pump Research and Development: Past, Present, and Future- An American Perspective
,”
J. Fluids Eng.
,
121
, pp.
237
247
.
4.
Raffel, M., Willert, C.E., and Kompenhaus, J., 1998, Particle Image Velocimetry: A Practical Guide, Springer, Berlin.
5.
Dong
,
R.
,
Chu
,
S.
, and
Katz
,
J.
,
1992
, “
Quantitative Visualization of the Flow Within the Volute of a Centrifugal Pump. Part B: Results and Analysis
,”
J. Fluids Eng.
,
114
, pp.
396
403
.
6.
Kadambi, J.R., Mehta, M., Charoenngam, P., Wernet, M., Sankovic, J., and Addie, A., 2003, “Particulate Velocity Measurements in the Intra-Blade Passages of a Centrifugal Slurry Pump,” FEDSM2003-45504, Proceedings of the 2003 ASME Fluids Engineering Division Summer Meeting, Honolulu, HI, July 6–10.
7.
Chu
,
S.
,
Dong
,
R.
, and
Katz
,
J.
,
1995
, “
Relationship between unsteady flow, pressure fluctuations, and noise in a centrifugal pump-part A: use of PDV data to compute the pressure field
,”
J. Fluids Eng.
,
117
, pp.
24
29
.
8.
Sinha
,
M.
, and
Katz
,
J.
,
2000
, “
Quantitative visualization of the flow in a centrifugal pump with diffuser vanes-1:on flow structures and turbulence
,”
J. Fluids Eng.
,
122
, pp.
997
1007
.
9.
Kerrigan
,
J. P.
,
Shaffer
,
F. D.
,
Maher
,
T. R.
,
Dennis
,
T. J.
,
Borovetz
,
H. S.
, and
Antaki
,
J. F.
,
1993
, “
Fluorescent Image Tracking Velocimetry of the Nimbus AxiPump
,”
ASAIO J.
,
39
, pp.
M639–M643
M639–M643
.
10.
Kerrigan
,
J. P.
,
Yamazaki
,
K.
,
Meyer
,
R. K.
,
Mori
,
T.
,
Otake
,
Y.
,
Outa
,
E.
,
Umezu
,
M.
,
Borovetz
,
H. S.
,
Kormos
,
R. L.
,
Griffith
,
B. P.
,
Koyanagi
,
H.
, and
Antaki
,
J. F.
,
1996
, “
High-Resolution Fluorescent Particle-Tracking Flow Visualization Within an Intraventricular Axial Flow Left Ventricular Assist Device
,”
Artif. Organs
,
20
, pp.
534
540
.
11.
Pinotti
,
M.
, and
Paone
,
N.
,
1996
, “
Estimating Mechanical Blood Trauma in a Centrifugal Blood Pump: Laser Doppler Anemometer Measurements of the Mean Velocity Field
,”
Artif. Organs
,
20
, pp.
546
552
.
12.
Sakuma
,
I.
,
Tadokoro
,
H.
,
Fukui
,
Y.
, and
Dohi
,
T.
,
1995
, “
Flow Visualization Study on Centrifugal Blood Pump Using a High Speed Video Camera
,”
Artif. Organs
,
19
, pp.
665
670
.
13.
Sakuma
,
I.
,
Fukui
,
Y.
, and
Dohi
,
T.
,
1996
, “
Study of Secondary Flow in Centrifugal Blood Pumps Using a Flow Visualization Method with a High-Speed Video Camera
,”
Artif. Organs
,
20
, pp.
541
545
.
14.
Asztalos
,
B.
,
Yamane
,
T.
, and
Nishida
,
M.
,
1999
, “
Flow Visualization Analysis for Evaluation of Shear and Recirculation in a New Closed-Type, Monopivot Centrifugal Blood Pump
,”
Artif. Organs
,
23
, pp.
939
946
.
15.
Subramanian
,
A.
,
Mu
,
H.
,
Kadambi
,
J. R.
,
Wernet
,
M. P.
,
Brendzel
,
A. M.
, and
Harasaki
,
H.
,
2000
, “
Particle Image Velocimetry Investigation of Intravalvular Flow Fields of a Bileaflet Mechanical Heart Valve in a Pulsatile Flow
,”
J. Heart Valve Dis.
,
9
, pp.
721
731
.
16.
Wernet
,
M. P.
,
Subramanian
,
A.
,
Mu
,
H.
, and
Kadambi
,
J. R.
,
2000
, “
Comparison of particle image velocimetry and laser Doppler anemometry measurements in turbulent fluid flow
,”
Ann. Biomed. Eng.
,
28
, pp.
1393
1396
.
17.
Mussivand
,
T.
,
Day
,
K. D.
, and
Naber
,
B. C.
,
1999
, “
Fluid Dynamic Optimization of a Ventricular Assist Device Using Particle Image Velocimetry
,”
ASAIO J.
,
45
, pp.
25
31
.
18.
Day
,
S. W.
,
McDaniel
,
J. C.
,
Wood
,
H. G.
,
Allaire
,
P. E.
,
Landrot
,
N.
, and
Curtas
,
A.
,
2001
, “
Particle Image Velocimetry Measurements of Blood Velocity in a Continuous Flow Ventricular Assist Device
,”
ASAIO J.
,
47
, pp.
406
411
.
19.
Day
,
S. W.
,
McDaniel
,
J. C.
,
Wood
,
H. G.
,
Allaire
,
P. E.
,
Song
,
X.
,
Lemire
,
P. P.
, and
Miles
,
S. D.
,
2002
, “
A Prototype HeartQuest Ventricular Assist Device for Particle Image Velocimetry Measurements
,”
Artif. Organs
,
26
, pp.
1002
1005
.
20.
Bernstein
,
E. F.
,
Cosentino
,
L. C.
,
Reich
,
S.
,
Stasz
,
P.
,
Levine
,
I. D.
,
Scott
,
D. R.
,
Dorman
,
F. D.
, and
Blackshear
, Jr.,
P. L.
,
1974
, “
A compact, low hemolysis, non-thrombogenic system for non-thoracotomy prolonged left ventricular bypass
,”
Trans. Am. Soc. Artif. Intern. Organs
,
20
, pp.
645
654
.
21.
Golding
,
L. A.
, and
Smith
,
W. A.
,
1996
, “
Cleveland Clinic Rotodynamic Pump
,”
Ann. Thorac. Surg.
,
61
, pp.
457
462
.
22.
Veres
,
J. P.
,
Golding
,
L. A.
,
Smith
,
W. A.
,
Horvath
,
D.
, and
Medvedev
,
A.
,
1997
, “
Flow Analysis of the Cleveland Clinic Centrifugal Pump
,”
ASAIO J.
,
43
, pp.
M778–M881
M778–M881
.
You do not currently have access to this content.