Measurements of magnetic-field-induced torque in applied uniform rotating magnetic fields are presented and compared to theoretical analyses for water- and oil-based ferrofluids. These experiments measure the viscous torque on the inner wall of a stationary hollow polycarbonate spindle that is completely filled with ferrofluid and attached to a viscometer functioning as a torque meter. The spindle remains stationary and is centered inside a three-phase AC 2-pole motor stator winding, creating uniform time-varying rotating magnetic fields. The viscous torque is measured as a function of magnetic field amplitude, frequency, and direction of rotation. These measurements demonstrate that ferrofluid flow and torque are present even in the absence of free surfaces and agree with a recently derived analysis of the torque during spin-up flow of ferrofluids.

1.
R. E. Rosensweig, 1997, Ferrohydrodynamics. Mineola, NY: Dover Publications.
2.
Shen
,
L. F.
,
Stachowiak
,
A.
,
Fateen
,
S. E. K.
,
Laibinis
,
P. E.
, and
Hatton
,
T. A.
,
2001
, “
Structure of alkanoic acid stabilized magnetic fluids. A small-angle neutron and light scattering analysis
,”
Langmuir
,
17
, pp.
288
299
.
3.
Pere´z-Castillejos
,
R.
,
Plaza
,
J. A.
,
Esteve
,
J.
,
Losantos
,
P.
,
Acero
,
M. C.
,
Cane
,
C.
, and
Serra-Mestres
,
F.
,
2000
, “
The use of ferrofluids in micromechanics
,”
Sensors and Actuators A-Physical
,
84
, pp.
176
180
.
4.
Menz, A., Benecke, W., Pe´rez-Castillejos, R., Plaza, J. A., Esteve, J., Garcia, N., Higuero, J., and Diez-Caballero, T., 2000, “Fluidic components based on ferrofluids,” presented at 1st Annual International IEEE-EMBS, Special Topic Conference on Microtechnologies in Medicine and Biology, Lyon, France.
5.
Hatch
,
A.
,
Kamholz
,
A. E.
,
Holman
,
G.
,
Yager
,
P.
, and
Bohringer
,
K. F.
,
2001
, “
A ferrofluidic magnetic micropump
,”
J. Microelectromech. Syst.
,
10
, pp.
215
221
.
6.
Berger
,
M.
,
Castelino
,
J.
,
Huang
,
R.
,
Shah
,
M.
, and
Austin
,
R. H.
,
2001
, “
Design of a microfabricated magnetic cell separator
,”
Electrophoresis
,
22
, pp.
3883
3892
.
7.
Zahn
,
M.
,
2001
, “
Magnetic fluid and nanoparticle applications to nanotechnology
,”
J. Nanoparticle Res.
,
3
, pp.
73
78
.
8.
Roger
,
J.
,
Pons
,
J. N.
,
Massart
,
R.
,
Halbreich
,
A.
, and
Bacri
,
J. C.
,
1999
, “
Some biomedical applications of ferrofluids
,”
Eur. Phys. J.: Appl. Phys.
,
5
, pp.
321
325
.
9.
Ramchand
,
C. N.
,
Pande
,
P.
,
Kopcansky
,
P.
, and
Mehta
,
R. V.
,
2001
, “
Application of magnetic fluids in medicine and biotechnology
,”
Indian J. Pure Appl. Phys.
,
39
, pp.
683
686
.
10.
Moskowitz
,
R.
, and
Rosensweig
,
R. E.
,
1967
, “
Nonmechanical Torque Driven Flow in Magnetic Suspensions
,”
Appl. Phys. Lett.
,
11
, pp.
1967
1967
.
11.
Brown
,
R.
, and
Horsnell
,
T. S.
,
1969
, “
The wrong way round
,”
Electrical Review
,
183
, pp.
235
235
.
12.
Kagan
,
I. Y.
,
Rykov
,
V. G.
, and
Yantovskii
,
E. I.
,
1973
, “
Flow of a dielectric ferromagnetic suspension in a rotating magnetic field
,”
Magnitnaya Gidrodynamika
,
9
, pp.
135
137
.
13.
Calugaru
,
G. H.
,
Cotae
,
C.
,
Badescu
,
R.
,
Badescu
,
V.
, and
Luca
,
E.
,
1976
, “
A new aspect of the movement of ferrofluids in a rotating magnetic field
,”
Reviews in Roumanian Physics
,
21
, pp.
439
440
.
14.
Rosensweig, R. E., and Johnston, R. J., 1989, “Aspects of magnetic fluid flow with nonequilibrium magnetization,” in Continuum Mechanics and its Applications, C. A. C. Graham and S. K. Malik, Eds.: Hemisphere Publishing Company, 1989, pp. 707–729.
15.
Rosensweig
,
R. E.
,
Popplewell
,
J.
, and
Johnston
,
R. J.
,
1990
, “
Magnetic fluid motion in rotating field
,”
Journal of Magnetism and Magnetic Materials
,
85
, pp.
171
180
.
16.
Zaitsev
,
V. M.
, and
Shliomis
,
M. I.
,
1969
, “
Entrainment of ferromagnetic suspension by a rotating field
,”
J. Appl. Mech. Tech. Phys.
,
10
, pp.
696
700
.
17.
Glazov
,
O. A.
,
1975
, “
Motion of a ferrosuspension in rotating magnetic fields
,”
Magnitnaya Gidrodynamika
,
11
, pp.
16
22
.
18.
Glazov
,
O. A.
,
1975
, “
Role of higher harmonics in ferrosuspension motion in a rotating magnetic field
,”
Magnitnaya Gidrodynamika
,
11
, pp.
31
31
.
19.
Glazov
,
O. A.
,
1982
, “
Velocity profiles for magnetic fluids in rotating magnetic fields
,”
Magnitnaya Gidrodynamika
,
18
, pp.
27
27
.
20.
Glazov
,
O. A.
,
1990
, “
Dynamics of magnetic fluids in rotating magnetic fields
,”
Magnitnaya Gidrodynamika
,
26
, pp.
83
88
.
21.
Bozorth, R. M., 1951, Ferromagnetism. New York, NY: IEEE Press.
22.
Shliomis
,
M. I.
,
1974
, “
Magnetic fluids
,”
Sov. Phys. Usp.
,
17
, pp.
156
156
.
23.
Onsager
,
L.
,
1936
, “
Electric Moments of Molecules in Liquids
,”
J. Am. Chem. Soc.
,
58
, pp.
1486
1493
.
24.
Shliomis
,
M. I.
,
1972
, “
Effective viscosity of magnetic suspensions
,”
Sov. Phys. JETP
,
34
, pp.
1291
1294
.
25.
Felderhof
,
B. U.
,
2000
, “
Magnetoviscosity and relaxation in ferrofluids
,”
Phys. Rev. E
,
62
, pp.
3848
3854
.
26.
Shliomis
,
M. I.
,
2001
, “
Comment on Magnetoviscosity and relaxation in ferrofluids
,”
Phys. Rev. E
,
6406
.
27.
Felderhof, B. U., 2001, “Reply to Comment on ‘Magnetoviscosity and relaxation in ferrofluids,’ ” Phys. Rev. E, 6406.
28.
Lehlooh
,
A. F.
,
Mahmood
,
S. H.
, and
Williams
,
J. M.
,
2002
, “
On the particle size dependence of the magnetic anisotropy energy constant
,”
Physica B
,
321
, pp.
159
162
.
29.
Melcher, J. R., 1981, Continuum Electromechanics. Cambridge, MA: MIT Press.
30.
Dahler
,
J. S.
, and
Scriven
,
L. E.
,
1963
, “
Theory of structured continua I. General consideration of angular momentum and polarization
,”
Proc. R. Soc. London
,
276
, pp.
504
527
.
31.
Rinaldi, C., 2002 “Continuum Modeling of Polarizable Systems,” Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA.
32.
Brenner
,
H.
,
1970
, “
Rheology of two-phase systems
,”
Annu. Rev. Fluid Mech.
,
2
, pp.
137
176
.
33.
Rinaldi
,
C.
, and
Zahn
,
M.
,
2002
, “
Effects of spin viscosity on ferrofluid flow profiles in alternating and rotating magnetic fields
,”
Phys. Fluids
,
14
, pp.
2847
2870
.
You do not currently have access to this content.