In this work, the structure of computed wall-impinging gas jets is compared with theoretical and experimental results presented in the literature. The computational study employs the k-ε model to represent turbulence. Wall functions are employed to model momentum transfer at the walls. The computed penetration and growth rate of the jet agree with measured and analytical results within 10%. Computed radial velocities in the developed region of the wall jet are self-similar as found in prior experimental and analytical works. The computed radial velocity profile and quantitative values in the outer layer of the jet and the location of the maximum radial velocity agree within 5% with measurements and analytical results. Greater quantitative differences are found in the near-wall region. Mixing characteristics of a wall-impinging jet are compared with those of a round free jet. The wall-impinging jet mixes slower than the round free jet.

1.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
,
13
, pp.
1
60
.
2.
Beltaos
,
S.
, and
Rajaratnam
,
N.
,
1972
, “
Impinging Circular Turbulent Jets
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
,
100
, pp.
1313
1328
.
3.
Fujimoto, H., Nogami M., Hyun G., Nogami, M., Hirakawa, K., Asai, T., and Senda, J., 1997, “Characteristics of Free and Impinging Gas Jets by Means of Image Processing,” SAE Paper 970045.
4.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
, and
Button
,
B. L.
,
1992
, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
, pp.
106
115
.
5.
Goldstein
,
R. J.
, and
Franchett
,
M. E.
,
1988
, “
Heat Transfer From a Flat Surface to an Oblique Impinging Jet
,”
ASME J. Heat Transfer
,
110
, pp.
84
90
.
6.
Dec, J. E., and Tree, D. R., 2001, “Diffusion-Flame/Wall Interactions in a Heavy-Duty DI Diesel Engine,” SAE Paper 2001-01-1295.
7.
Kittelson
,
D. B.
,
Ambs
,
J. L.
, and
Hadjkacem
,
H.
,
1990
, “
Particulate Emissions From Diesel Engines—Influence of In-Cylinder Surface
,”
SAE Trans.
,
99
, pp.
1457
1472
.
8.
Song, L., and Abraham, J., 2001, “Effect of Injector Hole Size, Number and Orientation on Diesel Engine Emissions,” Proceedings of the Second Joint Meeting of the US Sections of the Combustion Institute, Oakland, CA, The Combustion Institute, Pittsburgh, PA.
9.
Iyer, V. A., Post, S., and Abraham J., 2000, “Is the Liquid Penetration in Diesel Sprays Mixing Controlled?” Proceedings of 28th Combustion Institute, The Combustion Institute, Pittsburgh, PA, pp. 1111–1118.
10.
Iyer
,
V. A.
,
Abraham
,
J.
, and
Magi
,
V.
,
2002
, “
Exploring Injected Droplet Size Effects on Steady Liquid Penetration in a Diesel Spray With a Two-Fluid Model
,”
Int. J. Heat Mass Transfer
,
45
, pp.
519
531
.
11.
Post
,
S.
, and
Abraham
,
J.
,
2001
, “
A Computational Study of the Processes That Affect the Steady Liquid Penetration in Full-Cone Diesel Sprays
,”
Combust. Sci. Technol.
,
165
, pp.
1
40
.
12.
Siebers, D., 1998, “Liquid Phase Fuel Penetration in Diesel Sprays,” SAE Paper 980809.
13.
Bakke
,
P.
,
1957
, “
An Experimental Investigation of a Wall Jet
,”
J. Fluid Mech.
,
2
, pp.
467
472
.
14.
Tanaka
,
T.
, and
Tanaka
,
E.
,
1977
, “
Experimental Studies of a Radial Turbulent Jet (2nd Report, Wall Jet on a Flat Smooth Plate)
,”
Bull. JSME
,
20
, pp.
209
215
.
15.
Poreh
,
M.
,
Tsuei
,
Y. G.
, and
Cermak
,
J. E.
,
1967
, “
Investigation of a Turbulent Radial Wall Jet
,”
ASME J. Appl. Mech.
,
34
, pp.
457
463
.
16.
Witze, P. O., and Dwyer H. A., 1977, “Impinging Axisymmetric Turbulent Flows: The Wall Jet, the Radial Jet and Opposing Free Jets,” Proceedings of the 1st Symposium on Turbulent Shear Flows, Pennsylvania, pp. 2.33–2.39.
17.
Launder
,
B. E.
, and
Rodi
,
W.
,
1983
, “
The Turbulent Wall Jet—Measurements and Modeling
,”
Annu. Rev. Fluid Mech.
,
15
, pp.
429
459
.
18.
Tomita, E., Hamamoto, Y., Tsutsumi, H., Takasaki, S., Watanabe, T., and Yoshiyama, S., 1995, “Visualization of Ambient Air Motion and Entrainment Into a Transient Gas Jet Impinging on a Flat Wall,” SAE Paper 952513.
19.
Glauert
,
M. B.
,
1956
, “
The Wall Jet
,”
J. Fluid Mech.
,
1, Part 6
, pp.
625
643
.
20.
Patankar, S. V., and Spalding, D. B., 1967, Heat and Mass Transfer in Boundary Layers, Morgan-Grampian, London.
21.
Magi, V., 1987, “A New 3-D Code for Flows, Sprays, and Combustion in Reciprocating and Rotary Engines,” Mechanical and Aerospace Engineering Report, No. 1793, Princeton University, Princeton, NJ.
22.
Iyer
,
V.
, and
Abraham
,
J.
,
1998
, “
The Computed Structure of a Combusting Transient Jet Under Diesel Conditions
,”
SAE Trans.
,
107
, pp.
1669
1693
.
23.
Abraham
,
J.
, and
Magi
,
V.
,
1998
, “
A Model for Multicomponent Droplet Vaporization in Sprays
,”
SAE Trans.
,
107
, pp.
603
613
.
24.
Post
,
S.
,
Iyer
,
V.
, and
Abraham
,
J.
,
2000
, “
A Study of Near-Field Entrainment in Gas Jets and Sprays Under Diesel Conditions
,”
ASME J. Fluids Eng.
,
122
, pp.
385
395
.
25.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
, pp.
269
289
.
26.
Yakhot
,
V.
,
Orszag
,
S. A.
,
Thangam
,
S.
,
Gatski
,
T. B.
, and
Speziale
,
C. G.
,
1992
, “
Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,”
Phys. Fluids A
,
4
, pp.
1510
1520
.
27.
Abraham
,
J.
, and
Magi
,
V.
,
1997
, “
Computation of Transient Jets: RNG k-ε Model Versus Standard k-ε Model
,”
SAE Trans.
,
106
, pp.
1442
1452
.
28.
Chien
,
K. Y.
,
1982
, “
Predictions of Channel and Boundary-Layer Flows With a Low-Reynolds-Number Turbulent Model
,”
AIAA J.
,
20
, pp.
33
38
.
29.
Launder
,
B. E.
, and
Sharma
,
B. I.
,
1974
, “
Application of Energy Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
,
1
, pp.
131
138
.
30.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
15
, pp.
301
314
.
31.
Lam
,
C. K. G.
, and
Bremhorst
,
K. A.
,
1981
, “
Modified Form of the k-ε Model for Predicting Wall Turbulence
,”
ASME J. Fluids Eng.
,
103
, pp.
456
460
.
32.
Patel
,
V. C.
,
Rodi
,
W.
, and
Scheuerer
,
G.
,
1985
, “
Turbulence Models for Near-Wall and Low-Reynolds Number Flows: A Review
,”
AIAA J.
,
23
, pp.
1308
1319
.
33.
Wilcox, D. C., 1998, Turbulence and Modeling for CFD, 2nd Ed., DCW Industries.
34.
Iyer
,
V.
, and
Abraham
,
J.
,
1997
, “
Penetration and Dispersion of Transient Gas Jets and Sprays
,”
Combust. Sci. Technol.
,
130
, pp.
315
334
.
35.
Schlichting, H., 1987, Boundary Layer Theory, McGraw-Hill, New York.
36.
Abraham
,
J.
,
1996
, “
Entrainment Characteristics of Transient Gas Jets
,”
Numer. Heat Transfer
,
30
, pp.
347
364
.
37.
Magi
,
V.
,
Iyer
,
V.
, and
Abraham
,
J.
,
2001
, “
The k-ε Model and Computed Spreading Rates in Round and Plane Jets
,”
Numer. Heat Transfer
,
40
, pp.
317
334
.
38.
Abraham
,
J.
, and
Bracco
,
F. V.
,
1989
, “
Fuel-Air Mixing and Distribution in a Direct-Injection Stratified Charge Rotary Engine
,”
SAE Trans.
,
98
, pp.
515
526
.
39.
Abraham, J., Khan, A., and Magi, V., 1999, “Jet-Jet and Jet-Wall Interactions of Transient Jets From Multi-Hole Injectors,” SAE Paper 1999-01-0513.
You do not currently have access to this content.