A procedure has been developed to predict the effects of roughness and Reynolds number on the change in efficiency from a model or baseline to a prototype pump (“efficiency scaling”). The analysis of individual losses takes into account different roughnesses of impeller, diffuser/volute, impeller side disks, and casing walls in the impeller side rooms. The method also allows to predict the effect of roughness and Reynolds number on the hydraulic efficiency. The calculations are based on physical models but the weighting of impeller versus diffuser/volute roughness and the fraction of scalable losses within impeller and diffuser/volute are determined empirically from the analysis of tests with industrial pumps. The fraction of scalable impeller/diffuser/volute losses is found to decrease with growing specific speed. Roughness effects in the diffuser/volute are stronger than in the impeller, but the dominance of the stator over the rotor decreases with increasing specific speed. The procedure includes all flow regimes from laminar to turbulent and from hydraulically smooth to fully rough. It is validated by tests with viscosities between 0.2 to 3000 cSt and Reynolds numbers between 1500 and 108. The hydraulic losses depend on the patterns of roughness, near-wall turbulence, and the actual velocity distribution in the hydraulic passages. These effects—which are as yet not amenable to analysis—limit the accuracy of any efficiency prediction procedure for decelerated flows.

1.
Osterwalder
,
J.
,
1978
, “
Efficiency Scale-Up for Hydraulic Turbo-Machines With due Consideration of Surface Roughness
,”
J. Hydraul. Res.
,
16
(
1
), pp.
55
76
.
2.
Osterwalder, J., and Hippe, L., 1981, Betrachtungen zur Aufwertung bei Serienpumpen, VDI-Berichte (424), pp. 1–17.
3.
Osterwalder
,
J.
, and
Hippe
,
L.
,
1984
, “
Guidelines for Efficiency Scaling Process of Hydraulic Turbo-Machines With Different Technical Roughnesses of Flow Passages
,”
J. Hydraul. Res.
,
22
(
2
), pp.
77
102
.
4.
Hippe, L., 1984, “Wirkungsgradaufwertung bei Radialpumpen unter Beru¨cksichtigung des Rauheitseinflusses,” Diss. TH Darmstadt.
5.
Gu¨lich, J. F., 1999, Kreiselpumpen—Ein Handbuch fu¨r Entwicklung, Anlagenplanung und Betrieb, Springer, Berlin.
6.
Wiesner
,
F. J.
,
1979
, “
A New Appraisal of Reynolds Number Effects on Centrifugal Compressor Performance.
ASME J. Eng. Gas Turbines Power
,
101
, pp.
384
396
.
7.
Strub
,
R. A.
, et al.
,
1987
, “
Influence of the Reynolds Number on the Performance of Centrifugal Compressors
,”
ASME J. Turbomach.
,
109
, pp.
541
544
.
8.
Casey
,
M. V.
,
1985
, “
The Effect of Reynolds Number on the Efficiency of Centrifugal Compressor Stages
,”
ASME J. Eng. Gas Turbines Power
,
107
, pp.
541
548
.
9.
Guiton, P., and Canavelis, R., 1970, “Contribution a` l’e´tude de l’effet d’e´chelle sur le rendement des pompes,” IAHR Symp. Stockholm, Paper D2.
10.
Ida, T., 1979, “Analysis of Scale Effects on Centrifugal Pumps,” Science Reports of Research Inst. for Engng Kanagavwa University, Japan (2), pp. 21–43.
11.
Hydraulic Institute, Standards for Centrifugal, Rotary & Reciprocating Pumps, 1983, 14th Ed., Hydraulic Institute, Cleveland, OH.
12.
Gu¨lich
,
J. F.
, 1999, “Pumping Highly Viscous Fluids With Centrifugal Pumps,” World Pumps, 395(6).
13.
Hamkins
,
C. P.
, et al.
, 1987, “Prediction of Viscosity Effects in Centrifugal Pumps by Consideration of Individual Losses,” ImechE, C112/87, pp. 207–217.
14.
Stoffel, B., et al., 1978, “Untersuchungen von Einzelverlusten in Kreiselpumpen bei viskosen Flu¨ssigkeiten,” Pumpentagung Karlsruhe, K10.
15.
Hergt, P., et al., 1981, “Verlustanalyse an einer Kreiselpumpe auf der Basis von Messungen bei hoher Viskosita¨t des Fo¨rdermediums,” VDI Ber 424.
16.
Neumann, B., 1991, The Interaction Between Geometry and Performance of a Centrifugal Pump, MEP, London.
17.
Lauer, J., and Stoffel, B., 1997, “Theoretische Untersuchungen zum maximal erreichbaren Wirkungsgrad von Kreiselpumpen,” Industriepumpen+Kompressoren, 3(4), pp. 222–228.
18.
Varley
,
F. A.
,
1961
, “
Effects of Impeller Design and Surface Roughness on the Performance of Centrifugal Pumps
,”
Proc. Inst. Mech. Eng.
,
175
(
21
), pp.
955
969
.
19.
Li
,
Wen Guang
, 2000, “The “Sudden-Rising Head” Effect in Centrifugal Oil Pumps,” World Pumps, 409, pp. 34–36.
20.
Grein, H., 1975, “Einige Bemerkungen u¨ber die Oberfla¨chenrauheit der benetzten Komponenten hydraulischer Großmaschinen,” Escher Wyss Mitteilungen (1), pp. 34–40.
21.
Gu¨lich
,
J. F.
, 2002, “Disk Friction Losses of Closed Turbo Machinery Impellers,” submitted to Forsch Ing Wes (Engineering Research), 68.
22.
Dailey
,
J. W.
, and
Nece
,
R. E.
,
1960
, “
Chamber Dimension Effects on Frictional Resistance of Enclosed Rotating Disks
,”
ASME J. Basic Eng.
,
82
, pp.
217
232
.
23.
Pantell
,
K.
,
1949
, “
Versuche u¨ber Scheibenreibung
,”
Forsch Ingenieurwes
,
16
(
50
), pp.
97
108
.
24.
Linneken
,
H.
, 1957, “Der Radreibungsverlust, insbesondere bei Turbomaschinen,” AEG Mitt, 47(1/2), pp. 49–55.
25.
Nece
,
R. E.
, and
Daily
,
J. W.
,
1960
, “
Roughness Effects on Frictional Resistance of Enclosed Rotating Disks
,”
ASME J. Basic Eng.
,
82
, pp.
553
562
.
26.
Fukuda
,
H.
,
1964
, “
The Effect of Surface Roughness on the Performance of a Francis Turbine
,”
Bull. JSME
,
7
(
26
), pp.
346
356
.
27.
Geis, H., 1985, “Experimentelle Untersuchungen der Radseitenverluste von Hochdruck-Wasserturbinen radialer Bauart,” Diss. TH Darmstadt.
28.
Mu¨nch, A., 1999, “Untersuchungen zum Wirkungsgradpotential von Kreiselpumpen,” Diss. TU Darmstadt.
29.
Saxena, S. V., et al., 1996, “Ermittlung von Korrekturfaktoren fu¨r Hochleistungs-Pipeline-Kreiselpumpen beim Fo¨rdern von Mineralo¨len mit erho¨hter Viskosita¨t,” Pumpentagung Karlsruhe, Paper C7-3.
30.
Mollenkopf, G., 1976, “Einfluß der Za¨higkeit des Fo¨rdermediums auf das Betriebsverhalten von Kreiselpumpen unterschiedlicher spezifischer Schnella¨ufigkeit,” Pumpentagung Karlsruhe, K10.
31.
Gu¨lich, J. F., et al., 1991, “Rotor Dynamic and Thermal Deformation Tests of High-Speed Boiler Feedpumps,” EPRI Report GS-7405, July.
32.
Schlichting, H., 1982, Grenzschicht-Theorie. 8, Aufl, Braun, Karlsruhe.
33.
Childs
,
P. R. N.
, and
Noronha
,
M. B.
,
1999
, “
The Impact of Machining Techniques on Centrifugal Compressor Impeller Performance
,”
ASME J. Turbomach.
,
121
, pp.
637
643
.
34.
Nichtawitz, A., 1996, “Further Development of Step-Up Formula Considering Surface Roughness,” 18th IAHR Symp, pp. 343–351.
35.
Brodersen
,
S.
,
1993
, “
Reduzierung der Scheibenreibung bei Stro¨mungsmaschinen
,”
Forsch Ingenieurwes
,
59
, pp.
184
186
.
36.
Churchill, S. W., 1988, Viscous Flows. The Practical Use of Theory, Butterworth Ser Chem Engng, London.
You do not currently have access to this content.