Here we report on results obtained from large eddy simulations of flow inside a stirred tank performed using a spectral multidomain technique. The computations were driven by specifying the impeller-induced flow at the blade tip radius. Stereoscopic PIV measurements along with a theoretical model are used in defining the impeller-induced flow as a superposition of circumferential, jet and tip-vortex pair components. Both time-independent (fixed inflow) and time-dependent (oscillatory inflow) impeller-induced flows were considered. In both cases, the improved impeller-induced inflow allowed for the development of tip-vortex pairs in the interior of the tank. At Rem=4000 considered here, the flow in the interior of the tank naturally evolves to a time-dependent turbulent state. The jet component of the impeller-induced flow becomes unstable and shows signs of both sinuous and varicose behavior. The vortex pairs are anchored near the blades, but as they extend outwards into the tank their backbones exhibit time-dependent fluctuation. The instability of the jet is intimately connected with the fluctuation of the tip-vortex system. The time-averaged location of the vortex backbone compares well with previous measurements. The radial profile of θ-averaged radial velocity along the midplane is a good sensitive measure for evaluating the computed results. It is observed that computed flow from the 20 deg oscillatory impeller-induced inflow model compares well with the corresponding experimental measurements on the r-z plane.

1.
Middleton
,
J. C.
,
Pierce
,
F.
, and
Lynch
,
P. M.
,
1986
, “
Computations of Flow Fields and Complex Reaction Yield in Turbulent Stirred Reactors, and Comparison With Experimental Data
,”
Chem. Eng. Res. Des.
,
64
, pp.
18
22
.
2.
Ranade
,
V. V.
,
Joshi
,
J. B.
, and
Marathe
,
A. G.
,
1989
, “
Flow Generated by Pitched Blade Turbines II: Simulation Using k-e Model
,”
Chem. Eng., Commun.
81
, pp.
225
248
.
3.
Dong
,
L.
,
Johansen
,
S. T.
, and
Engh
,
T. A.
,
1994
, “
Flow Induced by an Impeller in an Unbaffled Tank—II: Numerical Modeling
,”
Chem. Eng. Sci.
,
49
, pp.
3511
3518
.
4.
Gosman
,
A. D.
,
Lekakou
,
C.
,
Politis
,
S.
,
Issa
,
R. I.
, and
Looney
,
M. K.
,
1992
, “
Multidimensional Modeling of Turbulent Two-Phase Flows in Stirred Vessels
,”
AIChE J.
,
38
, pp.
1946
1956
.
5.
Ju
,
S. Y.
,
Mulvahill
,
T. M.
, and
Pike
,
R. W.
,
1990
, “
Three-Dimensional Turbulent Flow in Agitated Vessels With a Nonisotropic Viscosity Turbulent Model
,”
Can. J. Chem. Eng.
,
68
, p.
3
3
.
6.
Eggels
,
J. M. G.
,
1996
, “
Direct and Large Eddy Simulation of Turbulent Fluid Flow Using the Lattice-Boltzmann Scheme
,”
Int. J. Heat Fluid Flow
,
17
, pp.
307
323
.
7.
Revstedt
,
J.
,
Fuchs
,
L.
, and
Tragardh
,
C.
,
1998
, “
Large Eddy Simulation of the Turbulent Flow in a Stirred Reactor
,”
Chem. Eng. Sci.
,
53
, pp.
4041
4053
.
8.
Luo
,
J. V.
,
Gosman
,
A. D.
,
Issa
,
R. I.
,
Middleton
,
J. C.
, and
Fitzgerald
,
M. K.
,
1993
, “
Full Flowfield Computation of Mixing in Baffled Stirred Reactors
,”
Trans. Inst. Chem. Eng.
,
71
Part A, pp.
342
344
.
9.
Lee
,
K. C.
,
Ng
,
K.
, and
Yianneskis
,
M.
,
1996
, “
Sliding Mesh Predictions of the Flow Around Rushton Impeller
,”
ICHEME Symp. Ser.
,
140
, pp.
47
58
.
10.
Pericleous
,
K. A.
, and
Patel
,
M. K.
,
1987
, “
The Source-Sink Approach in the Modeling of Stirred Reactors
,”
PhysioChem. Hydrody.
,
9
, pp.
279
297
.
11.
Van’t Riet
,
K.
, and
Smith
,
J. M.
,
1975
, “
The Trailing Vortex System Produced by Rushton Turbine Agitators
,”
Chem. Eng. Sci.
,
30
, p.
1093
1093
.
12.
Yianneskis
,
M.
,
Popiolek
,
Z.
, and
Whitelaw
,
J. H.
,
1987
, “
An Experimental Study of the Steady and Unsteady Flow Characteristics of Stirred Reactors
,”
J. Fluid Mech.
,
175
, p.
537
537
.
13.
Calabrese
,
R. V.
, and
Stoots
,
C. M.
,
1989
, “
Flow in the Impeller Region of a Stirred Tank
,”
Chem. Eng. Prog.
,
85
, pp.
43
50
.
14.
Yoon
,
H. S.
,
Sharp
,
K. V.
,
Hill
,
D. F.
,
Adrian
,
R. J.
,
Balachandar
,
S.
,
Ha
,
M. Y.
, and
Kar
,
K.
, 2001, “Integrated Experimental and Computational Approach to Simulation of Flow in a Stirred Tank,” Chem. Eng. Sci., to be published.
15.
Rao
,
M. A.
, and
Brodkey
,
R. S.
,
1972
, “
Continuous Flow Stirred Tank Turbulence Parameters in the Impeller Stream
,”
Chem. Eng. Sci.
,
27
, pp.
137
156
.
16.
Wu
,
H.
, and
Patterson
,
G. K.
,
1989
, “
Laser Doppler Measurements of Turbulent Flow Parameters in a Stirred Mixer
,”
Chem. Eng. Sci.
,
44
, pp.
2207
2221
.
17.
Sharp, K. V., Kim, K. S., and Adrian, R. J., 1998, “A Study of Vorticity and Dissipation Around a Rushton Turbine Using Particle Image Velocimetry,” Proc. 9th Int’l Symp. Applications Lasers to Fluid Mechanics, Lisbon, July 13–16, VKI Publications, Belgium, pp. 14.1.1–10.
18.
Hill
,
D. F.
,
Sharp
,
K. V.
, and
Adrian
,
R. J.
,
2000
, “
Stereoscopic Particle Image Velocimetry Measurements of the Flow Around a Rushton Turbine
,”
Exp. Fluids
,
29
, pp.
478
485
.
19.
Smagorinski
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations. I. The Basic Experiment
,”
Mon. Weather Rev.
,
91
, p.
99
99
.
20.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
,
A3
, pp.
1760
1765
.
21.
Mason
,
P. J.
, and
Callen
,
N. S.
,
1986
, “
On the Magnitude of the Subgrid-Scale Eddy Coefficient in Large-Eddy Simulations of Turbulent Channel Flow
,”
J. Fluid Mech.
,
162
, pp.
439
462
.
22.
Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A. 1988, Spectral Methods in Fluid Dynamics, Springer-Verlag, New York.
23.
Kolar
,
V.
,
Filip
,
P.
, and
Curev
,
A. G.
,
1982
, “
The Swirling Radial Jet
,”
Appl. Sci. Res.
,
39
, pp.
329
335
.
24.
Kolar
,
V.
,
Filip
,
P.
, and
Curev
,
A. G.
,
1984
, “
Hydrodynamics of a Radially Discharging Impeller Stream in Agitated Vessels
,”
Chem. Eng. Commun.
,
27
, pp.
313
326
.
25.
Kresta
,
S. M.
, and
Wood
,
P. E.
,
1991
, “
Prediction of the Three-Dimensional Turbulent Flow in Stirred Tanks
,”
AIChE J.
,
37
, pp.
448
460
.
26.
Roussinova
,
V. T.
,
Grgic
,
B.
, and
Kresta
,
S. M.
,
2000
, “
Study of Macro-Instabilities in Stirred Tanks Using Velocity Decomposition Technique
,”
Trans. Inst. Chem. Eng.
,
78
, pp.
1040
1052
.
27.
Schafer
,
M.
,
Yianneskis
,
M.
,
Wachter
,
P.
, and
Durst
,
F.
,
1998
, “
Trailing Vortices Around a 45deg Pitched Blade Impeller
,”
AIChE J.
,
44
, pp.
1233
1246
.
28.
Kim, K. C., 2002, personal communication.
29.
Drazin, P. G., and Reid, W. H., 1981, Hydrodynamic Stability, Cambridge University Press, New York.
30.
Verzicco, R, Iaccarino, G., Fatica, M., and Orlandi, P., 2000, “Flow in an Impeller Stirred Tank Using an Immersed Boundary Technique,” Ann. Res. Briefs, Center for Turbulence Research, NASA Ames/Stanford University, pp. 251–261.
31.
Jones
,
R. M.
,
Harvey
,
A. D.
, and
Acharya
,
S.
,
2001
, “
Two-Equation Turbulence Modeling for Impeller Stirred Tanks
,”
ASME J. Fluids Eng.
,
123
, pp.
640
648
.
32.
Zhou
,
J.
,
Adrian
,
R. J.
,
Balachandar
,
S.
, and
Kendall
,
T. M.
,
1999
, “
Mechanisms for Generating Coherent Packets of Hairpin Vortices in Near-Wall Turbulence
,”
J. Fluid Mech.
,
387
, pp.
353
396
.
You do not currently have access to this content.