The use of dense gases in many technological fields requires modern fluid dynamic solvers capable of treating the thermodynamic regions where the ideal gas approximation does not apply. Moreover, in some high molecular fluids, nonclassical fluid dynamic effects appearing in those regions could be exploited to obtain more efficient processes. This work presents the procedures for obtaining nonconventional thermodynamic properties needed by up to date computer flow solvers. Complex equations of state for pure fluids and mixtures are treated. Validation of sound speed estimates and calculations of the fundamental derivative of gas dynamics Γ are shown for several fluids and particularly for Siloxanes, a class of fluids that can be used as working media in high-temperature organic Rankine cycles. Some of these fluids have negative Γ regions if thermodynamic properties are calculated with the implemented modified Peng-Robinson thermodynamic model. Results of flow simulations of one-dimensional channel and two-dimensional turbine cascades will be presented in upcoming publications.

1.
Wagner
,
B.
, and
Schmidt
,
W.
,
1978
, “
Theoretical Investigation of Real Gas Effects in Cryogenic Wind Tunnels
,”
AIAA J.
,
16
, pp.
580
586
.
2.
Anderson, W. K., May 1991, “Numerical Study of the Aerodynamic Effects of Using Sulfur Hexafluoride as a Test Gas in Wind Tunnels,” NASA Technical Paper 3086, NASA Langley Research Center, Hampton, VA.
3.
Anders
,
J. B.
,
Anderson
,
W. K.
, and
Murthy
,
A. V.
,
1999
, “
Transonic Similarity Theory Applied to a Supercritical Airfoil in Heavy Gases
,”
J. Aircr.
,
36
,
Nov–Dec
, pp.
957
964
.
4.
Korte, J. J., 2000, “Inviscid Design of Hypersonic Wind Tunnel Nozzles for Real Gas,” E. Camhi, ed., Proceedings of the 38th Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 10–13, AIAA, Reston, VA, pp. 1–8.
5.
Bober
,
W.
, and
Chow
,
W. L.
,
1990
, “
Nonideal Isentropic Gas Flow Through Converging-Diverging Nozzles
,”
ASME J. Fluids Eng.
,
112
, pp.
455
460
.
6.
Dziedzidzic
,
W. M.
,
Jones
,
S. C.
,
Gould
,
D. C.
, and
Petley
,
D. H.
,
1993
, “
Analytical Comparison of Convective Heat Transfer Correlation in Supercritical Hydrogen
,”
J. Thermophys. Heat Transfer
,
7
, pp.
68
73
.
7.
Brown
,
B. P.
, and
Argrow
,
B. M.
,
2000
, “
Application of Bethe-Zel’dovic-Thompson Fluids in Organic Rankine Cycle Engines
,”
J. Propul. Power.
,
16
Nov–Dec
, pp.
1118
1123
.
8.
Angelino
,
G.
, and
Colonna
,
P.
,
1998
, “
Multicomponent Working Fluids for Organic Rankine Cycles (ORCs)
,”
Energy
,
23
, pp.
449
463
.
9.
Schnerr, G. H., and Leidner, P., 1993, “Numerical Investigation of Axial Cascades for Dense Gases.” E. L. Chin, ed., PICAST’1—Pacific International Conference on Aerospace Science Technology, Vol. 2, National Cheng Kung University, Publ., Taiwan, pp. 818–825.
10.
Monaco
,
J. F.
,
Cramer
,
M. S.
, and
Watson
,
L. T.
,
1997
, “
Supersonic Flows of Dense Gases in Cascade Configurations
,”
J. Fluid Mech.
,
330
, pp.
31
59
.
11.
Angelino
,
G.
, and
Invernizzi
,
C.
,
1996
, “
Potential Performance of Real Gas Stirling Cycles Heat Pumps
,”
Int. J. Refrig.
,
19
, p.
390
390
.
12.
Angelino, G., and Invernizzi, C., 2000, “Real Gas Effects in Stirling Engines,” 35th Intersociety Energy Conversion Engineering (IECEC), Las Vegas, NV July, AIAA, Reston, VA, pp. 69–75.
13.
Fitzgerald
,
R.
,
1999
, “
Traveling Waves Thermoacustic Heat Engines Attain High Efficiency
,”
Phys. Today
,
52
, pp.
18
20
.
14.
Glaister
,
P.
,
1988
, “
An Approximate Linearized Riemann Solver for the Euler Equations for Real Gases
,”
J. Comput. Phys.
,
74
, pp.
382
408
.
15.
Grossmann
,
B.
, and
Walters
,
R. W.
,
1989
, “
Analysis of the Flux-Split Algorithms for Euler’s Equations With Real Gases
,”
AIAA J.
,
27
, pp.
524
531
.
16.
Vinokur
,
M.
, and
Montagne’
,
J. L.
,
1990
, “
Generalized Flux-Vector Splitting and Roe Average for an Equilibrium Real Gas
,”
J. Comput. Phys.
,
89
, pp.
276
300
.
17.
Liou
,
M.-S.
,
van Leer
,
B.
, and
Shuen
,
J.-S.
,
1990
, “
Splitting of Inviscid Fluxes for Real Gases
,”
J. Comput. Phys.
,
87
, pp.
1
24
.
18.
Mottura
,
L.
,
Vigevano
,
L.
, and
Zaccanti
,
M.
,
1997
, “
An Evaluation of Roe’s Scheme Generalizations for Equilibrium Real Gas Flows
,”
J. Comput. Phys.
,
138
, pp.
354
339
.
19.
Guardone, A., Selmin, V., and Vigevano, L., 1999, “An Investigation of Roe’s Linearization and Average for Ideal and Real Gases,” Scientific Report DIA-SR 99-01, Politecnico di Milano, Dipartimento di Ingegneria Aerospaziale, Jan.
20.
Drikakis
,
D.
, and
Tsangaris
,
S.
,
1993
, “
Real Gas Effects for Compressible Nozzle Flows
,”
ASME J. Fluids Eng.
,
115
, pp.
115
120
.
21.
Cravero, C., and Satta, A., 2000, “A CFD Model for Real Gas Flows,” ASME Turbo Expo, Munich, May, ASME, New York, pp. 1–10.
22.
Aungier
,
R. H.
,
1995
, “
A Fast, Accurate Real Gas Equation of State for Fluid Dynamic Analysis Applications
,”
ASME J. Fluids Eng.
,
117
, pp.
277
281
.
23.
Cramer, M. S., 1991, Nonclassical Dynamics of Classical Gases (Nonlinear Waves in Real Fluids) International Center for Mechanical Sciences, Courses and Lectures, Springer-Verlag, Berlin.
24.
Aldo
,
A. C.
, and
Argrow
,
B. M.
,
1994
, “
Dense Gas Flows in Minimum Lenght Nozzles
,”
ASME J. Fluids Eng.
,
117
, pp.
270
276
.
25.
Argrow
,
B. M.
,
1996
, “
Computational Analysis of Dense Gas Shock Tube Flow
,”
Shock Waves
,
6
, pp.
241
248
.
26.
Brown
,
B. P.
, and
Argrow
,
B. M.
,
1998
, “
Nonclassical Dense Gas Flows for Simple Geometries
,”
AIAA J.
,
36
, (Oct) pp.
1842
1847
.
27.
Brown
,
B. P.
, and
Argrow
,
B. M.
,
1997
, “
Two-Dimensional Shock Tube Flow for Dense Gases
,”
J. Fluid Mech.
,
349
, pp.
95
115
.
28.
Cramer
,
M. S.
, and
Park
,
S.
,
1999
, “
On the Suppression of Shock-Induced Separation in Bethe-Zel’dovich-Thompson Fluids
,”
J. Fluid Mech.
,
393
, pp.
1
21
.
29.
Colonna, P., Rebay, S., and Silva, P., 2002, “Computer Simulations of Dense Gas Flows Using Complex Equations of State for Pure Fluids and Mixtures and State of the Art Numerical Schemes,” Tech Report Universita` di Brescia, Brescia, Italy.
30.
Reynolds, W. C., 1979, “Thermodynamic Properties in S.I.,” Department of Mechanical Engineering, Stanford University, Stanford, CA.
31.
Sandler, S. I., et al., 1994, Models for Thermodynamic and Phase Equilibria Calculations, Marcel Dekker, New York.
32.
Span
,
R.
,
Wagner
,
W.
,
Lemmon
,
E. W.
, and
Jacobsen
,
R. T.
,
2001
, “
Multiparameter Equations of State—Recent Trends and Future Challanges
,”
Fluid Phase Equilib.
,
183–184
, pp.
1
20
.
33.
Smith
,
D. H.
, and
Fere
,
M.
,
1995
, “
Improved Phase Boundary for One-Component Vapor-Liquid Equilibrium Incorporating Critical Behavior and Cubic Equations of State
,”
Fluid Phase Equilib.
,
113
, pp.
103
115
.
34.
Wong
,
D. S. H.
, and
Sandler
,
S. I.
,
1993
, “
A Theoretically Correct Mixing Rule for Cubic Equations of State
,”
AIChE J.
,
38
, pp.
671
680
.
35.
Keenan, J. H. et al., 1969, Steam Tables, John Wiley and Sons, New York.
36.
Haar
,
L.
, and
Gallagher
,
J. S.
,
1978
, “
Thermodynamics Properties of Ammonia
,”
J. Phys. Chem. Ref. Data
,
7
, pp.
635
791
.
37.
Starling, K. E., 1973, Equation of State and Computer Prediction—Fluid Thermodynamic Properties for Light Petroleum Substances Gulf Publishing, Houston.
38.
Martin
,
J. J.
, and
Hou
,
Y. C.
,
1955
, “
Development of an Equation of State for Gases
,”
AIChE J.
,
1
(
June
), pp.
142
151
.
39.
McLinden
,
M. O.
,
Lemmon
,
E. W.
, and
Jacobsen
,
R. T.
,
1998
, “
Thermodynamic Properties for the Alternative Refrigerants
,”
Int. J. Refrig.
,
21
(
June
), pp.
322
338
.
40.
Stryjeck
,
R.
, and
Vera
,
J. H.
,
1986
, “
PRSV: An Improved Peng-Robinson Equation of State for Pure Compounds and Mixtures
,”
Can. J. Chem. Eng.
,
64
, pp.
323
333
.
41.
Prausnitz
,
J. M.
,
1995
, “
Some New Frontiers in Chemical Engineering Thermodynamics
,”
Fluid Phase Equilib.
,
104
, pp.
1
20
.
42.
Bassi, F., Rebay, S., and Savini, M., 1991, “Transonic and Supersonic Inviscid Computations in Cascades Using Adaptive Unstructured Meshes,” International Gas Turbine & Aeroengine Congress & Exhibition, Orlando, FL., June 3–6, ASME, New York.
43.
Rebay, S., 1992, “Soluzione Numerica Adattiva su Reticoli non Strutturati delle Equazioni di Eulero,” Ph.D. thesis, Politecnico di Milano, Milano.
44.
Taylor
,
R.
,
1997
, “
Automatic Derivation of Thermodynamic Property Functions Using Computer Algebra
,”
Fluid Phase Equilib.
,
129
, pp.
37
47
.
45.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1993, Numerical Recipes in Fortran 77: The Art of Scientific Computing (Vol. 2, Numerical Analysis Series), 2nd Ed., Cambridge University Press, Cambridge, UK.
46.
Lemmon, E. W., McLinden, M. O., and Friend, D. G., 2001, Thermophysical Properties of Fluid Systems (NIST Chemistry WebBook, NIST Standard Reference Database Number 69), National Institute of Standards and Technology, Gaithersburg MD.
47.
Moldover
,
M.
,
Mehl
,
J. B.
, and
Greenspan
,
M.
,
1986
, “
Gas-Filled Spherical Resonators: Theory and Experiment
,”
J. Acoust. Soc. Am.
,
79
, pp.
253
272
.
48.
Cramer
,
M. S.
,
November
1989, “
Negative Nonlinearity in Selected Fluorocarbons
,”
Phys. Fluids A
,
11
, pp.
1894
1897
.
49.
Thompson
,
P. A.
, and
Lambrakis
,
K. C.
,
1973
, “
Negative Shock Waves
,”
J. Fluid Mech.
,
60
, pp.
187
208
.
50.
Wilcock
,
D. F.
,
1946
, “
Vapor Pressure-Viscosity relations in Methylpolysiloxanes
,”
J. Chem. Am. Soc.
,
68
(Apr) pp.
691
696
.
51.
Colonna, P., 1996, “Fluidi di Lavoro Multi Componenti Per Cicli Termodinamici di Potenza,” Ph.D. thesis, Politecnico di Milano, Milano.
52.
Kalina
,
A. L.
,
1984
, “
Combined Cycle Systems With Novel Bottoming Cycle
,”
ASME J. Eng. Gas Turbines Power
,
106
, pp.
737
742
.
53.
Ibrahim
,
M. B.
, and
Kovach
,
R. M.
,
1993
, “
A Kalina Cycle Application for Power Generation
,”
Energy
,
18
, pp.
961
969
.
54.
Marston
,
C. H.
, and
Hyre
,
M.
,
1995
, “
Gas Turbine Bottoming Cycles: Triple-Pressure Steam Versus Kalina
,”
ASME J. Eng. Gas Turbines Power
,
117
, pp.
10
15
.
55.
Marston
,
C. H.
,
1990
, “
Parametric Analysis of the Kalina Cycle
,”
ASME J. Eng. Gas Turbines Power
,
112
, pp.
107
116
.
56.
Rogdakis
,
E. D.
,
1996
, “
Thermodynamic Analysis, Parametric Study and Optimum Operation of the Kalina Cycle
,”
Int. J. Energy Res.
,
20
, pp.
359
370
.
57.
Heppenstall
,
T.
,
1998
, “
Advanced Gas Turbine Cycles for Power Generation: A Critical Review
,”
Appl. Therm. Eng.
,
18
, pp.
837
846
.
58.
Verschoor
,
M. J. E.
, and
Brouwer
,
E. P.
,
1995
, “
Description of the SMR Cycle Which Combines Fluid Elements of Steam and Organic Rankine Cycles
,”
Energy
,
20
, p.
295
295
.
59.
Orbey
,
H.
, and
Sandler
,
S. I.
,
1995
, “
Equation of State Modeling of Refrigerant Mixtures
,”
Ind. Eng. Chem. Res.
,
34
, pp.
2520
2525
.
60.
Lambrakis
,
K. C.
, and
Thompson
,
P. A.
,
1972
, “
Existence of Real Fluids With Negative Fundamental Derivative
,”
Phys. Fluids
,
15
, pp.
933
935
.
61.
Flaningam
,
O. L.
,
1986
, “
Vapor Pressures of Poly(Dimethylsiloxane) Oligomers
,”
J. Chem. Eng. Data
,
31
, pp.
266
272
.
62.
Wagner
,
W.
, and
Pruss
,
A.
,
2001
, “
New International Formulation for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use
,”
J. Phys. Chem. Ref. Data
,
30
,
to be published
to be published
.
63.
Span, R., 2000, Multiparameter Equations of State—An Accurate Source of Thermodynamic Property Data, Springer-Verlag, Berlin.
64.
Grigiante
,
M.
,
Scalabrin
,
G.
,
Benedetto
,
G.
,
Gavioso
,
R. M.
, and
Spagnolo
,
R.
,
2000
, “
Vapor Phase Acoustic Measurements for R125 and Development of a Helmholtz Free Energy Equation
,”
Fluid Phase Equilib.
,
174
, pp.
69
79
.
You do not currently have access to this content.