The approximate deconvolution model for large-eddy simulation is formulated for a second-order finite volume scheme. With the approximate deconvolution model, an approximation of the unfiltered solution is obtained by repeated filtering, and given a good approximation of the unfiltered solution, the nonlinear terms of the Navier-Stokes equations are computed directly. The effect of scales not represented on the numerical grid is modeled by a relaxation regularization involving a secondary filter operation. A turbulent channel flow at a Mach number of M=1.5 and a Reynolds number based on bulk quantities of Re=3000 is selected for validation of the approximate deconvolution model implementation in a finite volume code. A direct numerical simulation of this configuration has been computed by Coleman et al. Overall, our large-eddy simulation results show good agreement with our filtered direct numerical simulation data. For this rather simple configuration and the low-order spatial discretization, differences between approximate deconvolution model and a no-model computation are found to be small.

1.
Dolling
,
D. S.
,
2001
, “
Fifty Years of Shock-Wave/Boundary-Layer Interaction Research: What Next?
AIAA J.
,
39
, p.
1517
1517
.
2.
Stolz
,
S.
, and
Adams
,
N. A.
,
1999
, “
An Approximate Deconvolution Procedure for Large-Eddy Simulation
,”
Phys. Fluids
,
11
, pp.
1699
1701
.
3.
Stolz
,
S.
,
Adams
,
N. A.
, and
Kleiser
,
L.
,
2001
, “
An Approximate Deconvolution Model for Large-Eddy Simulation With Application to Incompressible Wall-Bounded Flows
,”
Phys. Fluids
,
13
, pp.
997
1015
.
4.
Stolz
,
S.
,
Adams
,
N. A.
, and
Kleiser
,
L.
,
2001
, “
An Approximate Deconvolution Model for Large-Eddy Simulations of Compressible Flows and Its Application to Shock-Turbulent-Boundary-Layer Interaction
,”
Phys. Fluids
,
13
, pp.
2985
3001
.
5.
Stolz, S., Adams, N. A., and Kleiser, L., 2000, “LES of Shock-Boundary Layer Interaction With the Approximate Deconvolution Model,” Advances in Turbulence, Proceedings of the 8th European Turbulence Conference, C. Dopazo et al., eds., CIMNE, Barcelona, pp. 715–718.
6.
Deschamps, V., 1988, “Simulation Nume´rique de la Turbulence Inhomoge`ne Incompressible dans un E´coulement de Canal Plan,” ONERA, TR 1988-5, Cha^tillon, France.
7.
Stolz, S., 2000, “Large-Eddy Simulation of Complex Shear Flows Using an Approximate Deconvolution Model,” Diss. ETH No. 13861.
8.
Adams, N. A., 2001, “The Role of Deconvolution and Numerical Discretization in Subgrid-Scale Modeling,” Direct and Large-Eddy Simulation IV, B. Geurts, R. Friedrich, and O. Me´tais, eds., Kluwer, Dordrecht, The Netherlands.
9.
Domaradzki, J. A., Loh, K. C., and Yee, P. P., 2001, “Large Eddy Simulations Using the Subgrid-Scale Estimation Model and Truncated Navier-Stokes Dynamics,” submitted for publication.
10.
Lesieur
,
M.
, and
Me´tais
,
O.
,
1996
, “
New Trends in Large-Eddy Simulations of Turbulence
,”
Annu. Rev. Fluid Mech.
,
28
, p.
45
45
.
11.
Batchelor, G. K., 1953, The Theory of Homogeneous Turbulence, Cambridge University Press, Cambridge, UK.
12.
Lele
,
S. K.
,
1992
, “
Compact Finite-Difference Schemes With Spectral-Like Resolution
,”
J. Comput. Phys.
,
103
, p.
16
16
.
13.
Jameson, A., Schmidt, W., and Turkel, E., “Numerical Solution of the Euler Equations by Finite-Volume Methods Using Runge-Kutta Time Stepping Schemes,” AIAA Paper No. 81-1259, July.
14.
Vos, J. B., Leyland, P., Lindberg, P. A., van Kemenade, V., Gacherieu, C., Duquesne, N., Lotstedt, P., Weber, C., Ytterstro¨m, A., and Saint Requier, C., 2000, “NSMB Handbook,” Technical Report 4.5, EPF Lausanne, KTH, CERFACS, Ae´rospatiale, SAAB, EPF Lausanne, Switzerland.
15.
Vos, J. B., Rizzi, A. W., Corjon, A., Chaput, E., and Soinne, E., 1988, “Recent Advances in Aerodynamics Inside the NSMB (Navier-Stokes Multi-Block) Consortium,” AIAA Paper No. AIAA-98-0225.
16.
Ducros
,
F.
,
Laporte
,
F.
,
Soule`res
,
T.
,
Guinot
,
V.
,
Moinat
,
P.
, and
Caruelle
,
B.
,
2000
, “
High-Order Fluxes for Conservative Skew-Symmetric-Like Schemes in Structured Meshes: Application to Compressible Flows
,”
J. Comput. Phys.
,
161
, pp.
114
139
.
17.
Peyret, R., and Taylor, T. D., 1983, Computational Methods for Fluid Flows, Springer-Verlag, New York.
18.
Coleman
,
G. N.
,
Kim
,
J.
, and
Moser
,
R. D.
,
1995
, “
A Numerical Study of Turbulent Supersonic Isothermal-Wall Channel Flow
,”
J. Fluid Mech.
,
305
, pp.
159
183
.
19.
Lenormand
,
E.
,
Sagaut
,
P.
,
Ta Phuoc
,
L.
, and
Comte
,
P.
,
2000
, “
Subgrid-Scale Models for Large-Eddy Simulations of Compressible Wall Bounded Flows
,”
AIAA J.
,
38
, pp.
1340
1350
.
20.
Bardina, J., Ferziger, J. H., and Reynolds, W. C., 1983, “Improved Turbulence Models Based on Large-Eddy Simulation of Homogeneous, Incompressible, Turbulent Flows,” Thermosciences Div., Rept. TF-19, Department of Mechanical Engineering, Stanford University, Stanford, CA.
21.
Bardina
,
J.
,
Ferziger
,
J. H.
, and
Reynolds
,
W. C.
,
1980
, “
Improved Subgrid Scale Models for Large-Eddy Simulation
,”
AIAA J.
,
80
, p.
1357
1357
.
22.
Mossi, M., 1999, “Simulation of Benchmark and Industrial Unsteady Compressible Turbulent Fluid Flows,” The`se EPFL No. 1958.
23.
Garnier
,
E.
,
Mossi
,
M.
,
Sagaut
,
P.
,
Comte
,
P.
, and
Deville
,
M.
,
1999
, “
On the Use of Shock-Capturing Schemes for Large-Eddy Simulation
,”
J. Comput. Phys.
,
153
, pp.
273
311
.
24.
Stolz, S., Adams, N. A., and Kleiser, L., 2002, “The Approximate Deconvolution Model for Compressible Flows: Isotropic Turbulence and Shock-Boundary-Layer Interaction,” R. Friedrich and W. Rodi, eds., Advances in LES of Complex Flows, Kluwer, Dordrecht, The Netherlands.
You do not currently have access to this content.