Gravitationally driven flow of a thin film down an arbitrarily curved wall is analyzed for moderate Reynolds number by generalizing equations previously developed for flow on a planar wall. In the analysis, the ratio of the characteristic film thickness to the characteristic dimension of the wall is presumed small, and terms estimated to be first order in this parameter are retained. Partial differential equations are reduced to ordinary differential equations by the method of von Ka´rma´n and Pohlhausen; namely, an expression for the velocity profile is assumed, and the equation for conservation of linear momentum is averaged across the film. The assumed velocity profile changes shape in the flow direction because a self-similar profile, one of fixed shape but variable magnitude, leads to an equation that typically fails under critical conditions. The resulting equations for film thickness routinely accommodate subcritical-to-supercritical transitions and supercritical-to-subcritical transitions as classified by the underlying wave propagation. The more severe supercritical-to-subcritical transition is manifested by a standing wave where the film noticeably thickens; this standing wave is a simple analogue of a hydraulic jump. Predictions of the film-thickness profile and variations in the velocity profile compare favorably with those from the Navier-Stokes equation obtained by the finite element method.

1.
Kistler, S. F., and Schweizer, P. M., eds., 1997, Liquid Film Coating, Chapman & Hall, New York.
2.
Ruschak
,
K. J.
, and
Weinstein
,
S. J.
,
1999
, “
Viscous Thin-Film Flow Over a Round-Crested Weir
,”
ASME J. Fluids Eng.
,
121
, pp.
673
677
.
3.
Ruschak
,
K. J.
, and
Weinstein
,
S. J.
,
2000
, “
Thin-Film Flow at Moderate Reynolds Number
,”
ASME J. Fluids Eng.
,
122
, pp.
774
778
.
4.
Ruschak
,
K. J.
, and
Weinstein
,
S. J.
,
2001
, “
Developing Film Flow on an Inclined Plane With a Critical Point
,”
ASME J. Fluids Eng.
,
123
, pp.
698
702
.
5.
Higuera
,
F. J.
,
1994
, “
The Hydraulic Jump in Viscous Laminar Flow
,”
J. Fluid Mech.
,
274
, pp.
69
92
.
6.
Levich, V. G., 1962, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, NJ, Chap. 12.
7.
Schlichting, H., 1979, Boundary-Layer Theory, 7th Ed., McGraw-Hill, New York, pp. 157–158.
8.
Atkinson
,
B.
, and
McKee
,
R. L.
,
1964
, “
A Numerical Investigation of Non-uniform Film Flow
,”
Chem. Eng. Sci.
,
19
, pp.
457
470
.
9.
Weinstein
,
S. J.
, and
Ruschak
,
K. J.
,
1999
, “
On the Mathematical Structure of Thin Film Equations Containing a Critical Point
,”
Chem. Eng. Sci.
,
54
(
8
), pp.
977
985
.
10.
Weinstein
,
S. J.
, and
Ruschak
,
K. J.
,
2001
, “
Dip Coating on a Planar Non-vertical Substrate in the Limit of Negligible Surface Tension
,”
Chem. Eng. Sci.
,
56
, pp.
4957
4969
.
11.
Hassan
,
N. A.
,
1967
, “
Laminar Flow Along a Vertical Wall
,”
ASME J. Appl. Mech.
,
34
, pp.
535
537
.
12.
Bohr
,
T.
,
Putkaradze
,
V.
, and
Watanabe
,
S.
,
1997
, “
Averaging Theory for the Structure of Hydraulic Jumps and Separation in Laminar Free-Surface Flows
,”
Phys. Rev. Lett.
,
79
, pp.
1038
1041
.
13.
Bohr
,
T.
,
Ellegaard
,
C.
,
Hansen
,
A. E.
, and
Haaning
,
A.
,
1996
, “
Hydraulic Jumps, Flow Separation and Wave Breaking: An Experimental Study
,”
Physica B
,
228
, pp.
1
10
.
14.
Schwartz
,
L. W.
, and
Weidner
,
D. E.
,
1995
, “
Modeling of Coating Flows on Curved Surfaces
,”
J. Eng. Math.
,
29
, pp.
91
103
.
15.
Roy
,
R. V.
,
Roberts
,
A. J.
, and
Simpson
,
M. E.
,
2002
, “
A Lubrication Model of Coating Flows Over a Curved Substrate in Space
,”
J. Fluid Mech.
,
454
, pp.
235
261
.
16.
Berger
,
R. C.
, and
Carey
,
G. F.
,
1998
, “
Free Surface Flow Over Curved Surfaces. Part I: Perturbation Analysis
,”
Int. J. Numer. Methods Fluids
,
28
, pp.
191
200
.
17.
Roy
,
T. R.
,
1984
, “
On Laminar Thin-Film Flow Along a Vertical Wall
,”
ASME J. Appl. Mech.
,
51
, pp.
691
692
.
18.
Alekseenko, S. V., Nakoryakov, V. E., and Pokusaev, B. G., 1994, Wave Flow of Liquid Films, Begell House, New York.
19.
Ruschak
,
K. J.
,
1978
, “
Flow of a Falling Film Into a Pool
,”
AIChE J.
,
24
, pp.
705
710
.
20.
Miller, C. A., and Neogi, P., 1995, Interfacial Phenomena: Equilibrium and Dynamic Effects, Marcel Dekker, New York.
21.
Ruschak
,
K. J.
,
1980
, “
A Method for Incorporating Free Boundaries With Surface Tension in Finite Element Fluid-Flow Simulators
,”
Int. J. Numer. Methods Eng.
,
15
, pp.
639
648
.
22.
Watson
,
E. J.
,
1964
, “
The Radial Spread of a Liquid Jet Over a Horizontal Plane
,”
J. Fluid Mech.
,
20
, pp.
481
499
.
You do not currently have access to this content.