A supersonic flat-plate boundary layer at a Reynolds number of 2×104 based on the inflow boundary layer thickness is investigated at different Mach numbers (M=2.88 and 4) using the monotonically integrated large-eddy simulation (MILES) technique. The inherent numerical dissipation is taken as an implicit subgrid scales (SGS) model to close the Favre-filtered compressible Navier-Stokes (NS) equations. A finite volume method with second-order accuracy in time and space is implemented for the solution of the Navier-Stokes equations on an unstructured grid of tetrahedra. The heat transfer coefficient is predicted by simulating both adiabatic and isothermal cases. The mean flowfield and turbulent stresses are in good agreement with experiment. The relationship between the predicted skin friction coefficient and heat transfer coefficient is in close agreement with the Reynolds analogy factor. The variation of turbulent Prandtl number cross the boundary layer falls within the experimental envelope. These are the first LES predictions of adiabatic and isothermal supersonic flat plate boundary layers using the MILES technique.

1.
Masad
,
J. A.
, and
Abid
,
R.
,
1995
, “
On Transition in Supersonic and Hypersonic Boundary Layers
,”
Int. J. Eng. Sci.
,
33
, pp.
1893
1919
.
2.
Dussauge
,
Jean-Paul
, and
Smits
,
A. J.
,
1997
, “
Characteristic Scales for Energetic Eddies in Turbulent Supersonic Boundary Layers
,”
Exp. Therm. Fluid Sci.
,
14
, pp.
85
91
.
3.
Debie`ve
,
J.
,
Dupont
,
P.
,
Laurent
,
H.
,
Menaa
,
M.
, and
Dussauge
,
Jean-Paul
,
2000
, “
Compressibility and Structure of Turbulence in Supersonic Shear Flows
,”
Eur. J. Mech. B—Fluids
,
19
, pp.
597
614
.
4.
Kistler
,
A. L.
,
1959
, “
Fluctuation Measurements in a Supersonic Turbulent Boundary Layer Flow
,”
Phys. Fluids A
,
2
, pp.
290
296
.
5.
Bradshaw
,
P.
,
1977
, “
Compressible Turbulent Shear Layers
,”
Annu. Rev. Fluid Mech.
,
9
, pp.
33
54
.
6.
Spina
,
E. F.
,
Donovan
,
J. F.
, and
Smits
,
A. J.
,
1991
, “
On the Structure of High-Reynolds-Number Supersonic Turbulent Boundary Layers
,”
J. Fluid Mech.
,
222
, pp.
293
327
.
7.
Spina
,
E. F.
,
Smits
,
A. J.
, and
Robinson
,
S. K.
,
1994
, “
The Physics of Supersonic Turbulent Boundary Layers
,”
Annu. Rev. Fluid Mech.
,
26
, pp.
287
319
.
8.
Lele
,
S. K.
,
1994
, “
Compressibility Effects on Turbulence
,”
Annu. Rev. Fluid Mech.
,
26
, pp.
211
254
.
9.
Smits, A. J., and Dussauge, Jean-Paul, 1996, Turbulent Shear Layers in Supersonic Flow, American Institute of Physics, Woodbury, NY.
10.
Erlebacher
,
G.
,
Hussaini
,
M. Y.
,
Speziale
,
C.
, and
Zang
,
T. A.
,
1992
, “
Toward the Large-Eddy Simulation of Compressible Turbulent Flows
,”
J. Fluid Mech.
,
238
, pp.
155
185
.
11.
Sommer
,
T. P.
,
So
,
R. M. C.
, and
Zhang
,
H. S.
, “Supersonic Flow Calculations Using a Reynolds-Stress and a Thermal Eddy Diffusivity Turbulence Model,” ASME J. Fluids Eng., 116, pp.469–476.
12.
Childs, R. E., and Reisenthel, P. H., 1995, “Simulation Study of Compressible Turbulent Boundary Layer,” AIAA Paper No. 95-0582.
13.
Hatay, F. F., and Biringen, S., 1995, “Direct Numerical Simulation of Low-Reynolds Number Supersonic Turbulent Boundary Layers,” AIAA Paper No. 95-0581.
14.
Rai, M. M., Gatski, T. B., and Erlebacher, G., 1995, “Direct Simulation of Spatially Evolving Compressible Turbulent Boundary Layers,” AIAA Paper No. 95-0583.
15.
Ducros
,
F.
,
Comte
,
P.
, and
Lesieur
,
M.
,
1996
, “
Large Eddy Simulation of Transition to Turbulence in a Boundary Layer Developing Spatially over a Flat Plate
,”
J. Fluid Mech.
,
326
, pp.
1
36
.
16.
Haworth, D., and Jansen, K. E., 1996, “LES on Unstructured Deforming Meshes: Towards Reciprocating IC Engines,” Proceedings of the 1996 Summer Program, Center for Turbulence Research, Stanford University/NASA Ames Research Center, Stanford University, Stanford, CA, pp. 329–346.
17.
Spyropoulos
,
E.
, and
Blaisdell
,
G.
,
1996
, “
Evaluation of the Dynamic Model for Simulations of Compressible Decaying Isotropic Turbulence
,”
AIAA J.
,
34
, pp.
990
998
.
18.
Jansen, K. E., 1997, “Large-Eddy Simulation Using Unstructured Grids,” Advances in DNS/LES, Greyden Press, pp. 117–128.
19.
Knight, D., 1997, “Numerical Simulation of Compressible Turbulent Flows Using the Reynolds-Averaged Navier-Stokes Equations,” AGARD FDP/VKI Special Course on Turbulence in Compressible Flows, AGARD Report R-819.
20.
Urbin, G., Knight, D., and Zheltovodov, A. A., 1990, “Compressible Large Eddy Simulation Using Unstructured Grid: Supersonic Turbulent Boundary Layer and Compression Corner,” AIAA Paper No. 99-0427.
21.
Guarini
,
S. E.
,
Moser
,
R. D.
,
Shariff
,
K.
, and
Wray
,
A.
,
2000
, “
Direct Numerical Simulation of a Supersonic Turbulent Boundary Layer at Mach 2.5
,”
J. Fluid Mech.
,
414
, pp.
1
33
.
22.
Guezangar
,
D.
,
Francescatto
,
J.
,
Guillard
,
H.
, and
Dussauge
,
J.-P.
,
2000
, “
Variations on a k−ε Turbulence Model for Supersonic Boundary Layer Computation
,”
Eur. J. Mech. B/Fluids
,
18
, pp.
713
738
.
23.
Adams
,
N. A.
,
Maeder
,
T.
,
Guo
,
Y.
, and
Kleiser
,
L.
,
2001
, “
Direct Simulation of Turbulent Supersonic Boundary Layers by Extended Temporal Approach
,”
J. Fluid Mech.
,
429
, pp.
187
216
.
24.
Urbin
,
G.
, and
Knight
,
D.
,
2001
, “
Large Eddy Simulation of Supersonic Turbulent Boundary Layer Using an Unstructured Grid
,”
AIAA J.
,
39
, pp.
1288
1295
.
25.
Piomelli
,
U.
,
Zang
,
T. A.
,
Speziale
,
C. G.
, and
Hussaini
,
M. Y.
,
1990
, “
On the Large-Eddy Simulation of Transitional Wall-Bounded Flows
,”
Phys. Fluids A
,
A2
, pp.
257
265
.
26.
Lesieur
,
M.
, and
Metais
,
O.
,
1996
, “
New Trends in Large-Eddy Simulations of Turbulence
,”
Annu. Rev. Fluid Mech.
,
28
, pp.
45
82
.
27.
Yoshizawa
,
A.
,
1986
, “
Statistical Theory for Compressible Turbulent Shear Flows, With the Application to Subgrid Modeling
,”
Phys. Fluids
,
29
, pp.
127
140
.
28.
Speziale
,
C. G.
,
Erlebacher
,
G.
,
Zang
,
T. A.
, and
Hussaini
,
M. Y.
,
1988
, “
The Subgrid-Scale Modeling of Compressible Turbulence
,”
Phys. Fluids
,
31
, pp.
940
942
.
29.
Zang
,
T. A.
,
Dahlburg
,
R. B.
, and
Dahlburg
,
J. P.
,
1992
, “
Direct and Large Eddy Simulations of Compressible Navier-Stokes Turbulence
,”
Phys. Fluids A
,
A1
, pp.
127
140
.
30.
Boris
,
J.
,
Grinstein
,
F.
,
Oran
,
E.
, and
Kolbe
,
R.
,
1992
, “
New Insights into Large Eddy Simulation
,”
Fluid Dyn. Res.
,
10
, pp.
199
228
.
31.
Spyropoulos
,
E.
, and
Blaisdell
,
G.
,
1998
, “
Large Eddy Simulation of a Spatially Evolving Supersonic Turbulent Boundary Layer Flow
,”
AIAA J.
,
36
, pp.
1983
1990
.
32.
Grinstein
,
F. F.
,
1995
, “
Self-Induced Vortex Ring Dynamics in Subsonic Rectangular Jets
,”
Phys. Fluids
,
7
, pp.
2519
2521
.
33.
Grinstein
,
F. F.
,
Gutmark
,
E. J.
,
Parr
,
T.
,
Hanson-Parr
,
D.
, and
Obeysekare
,
U.
,
1996
, “
Streamwise and Spanwise Vortex Interaction in an Axisymmetric Jet, A Computational and Experimental Study
,”
Phys. Fluids
,
8
, pp.
1515
1524
.
34.
Grinstein
,
F. F.
, and
DeVore
,
C. R.
,
1996
, “
Dynamics of Coherent Structures and Transition to Turbulence in Free Square Jets
,”
Phys. Fluids
,
8
, pp.
1237
1251
.
35.
Gathmann
,
R. J.
,
Si-Ameur
,
M.
, and
Mathey
,
F.
,
1993
, “
Numerical Simulations of Three-Dimensional Natural Transition in the Compressible Confined Shear Layer
,”
Phys. Fluids
,
5
, pp.
2946
2968
.
36.
Porter
,
D. H.
,
Pouquet
,
A.
, and
Woodward
,
P. R.
,
1994
, “
Kolmogorov-Like Spectra in Decaying Three Dimensional Supersonic Flows
,”
Phys. Fluids
,
6
, pp.
2133
2142
.
37.
Fureby
,
C.
, and
Grinstein
,
F. F.
,
1999
, “
Monotonically Integrated Large Eddy Simulation of Free Shear Flows
,”
AIAA J.
,
37
, pp.
544
556
.
38.
Fureby, C., Nilsson, Y., and Andersson, K., 1999, “Large Eddy Simulation of Supersonic Base Flow,” AIAA Paper No. 99-0426.
39.
Fureby, C., and Grinstein, F. F., 2000, “Large Eddy Simulation of High Reynolds-Number Free and Wall Bounded Flows,” AIAA Paper No. 2000-2307.
40.
Knight, D., Yan, H., and Zheltovodov, A. A., 2001, “Large Eddy Simulation of Supersonic Turbulent Flow in Expansion-Compression Corner,” Third AFOSR International Conference on DNS and LES, University of Texas at Arlington, Aug.
41.
Urbin, G., Knight, D., and Zheltovodov, A. A., 2000, “Large Eddy Simulation of a Supersonic Compression Corner Part I,” AIAA Paper No. 2000-0398.
42.
Chernyavsky, B., Yan, H., and Knight, D., 2001, “Analyses of Some Numerical Problem in LES,” AIAA Paper No. 2001-0436.
43.
Moin, P., and Jimenez, J., 1993, “Large Eddy Simulation of Complex Turbulent Flows,” AIAA Paper No. 93-3099.
44.
Moin
,
P.
,
Squires
,
K.
,
Cabot
,
W.
, and
Lee
,
S.
,
1991
, “
A Dynamic Subgrid-scale Model for Compressible Turbulence and Scalar Transport
,”
Phys. Fluids A
,
11
, pp.
2746
2757
.
45.
Gottlieb
,
J.
, and
Groth
,
C.
,
1988
, “
Assessment of Riemann Solvers for Unsteady One-Dimensional Inviscid Flows of Perfect Gases
,”
J. Comput. Phys.
,
78
, pp.
437
458
.
46.
Ollivier-Gooch, C., 1997, “High Order ENO Schemes for Unstructured Meshes Based on Least Squares Reconstruction,” AIAA Paper No. 97-0540.
47.
Knight
,
D.
,
1994
, “
A Fully Implicit Navier-Stokes Algorithm Using an Unstructured Grid and Flux Difference Splitting
,”
Appl. Numer. Math.
16
, pp.
101
128
.
48.
Knight, D., and Okong’o, N., 1998, “Accurate Three-Dimensional Unsteady Flow Simulation Using Unstructured Grids,” AIAA Paper No. 98-0787.
49.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed., Cambridge University Press, Cambridge, NY.
50.
Lund
,
T.
,
Wu
,
X.
, and
Squires
,
K.
,
1998
, “
Generation of Turbulent Inflow Data for Spatially Developing Boundary Layer Simulation
,”
J. Comput. Phys.
,
140
, pp.
233
258
.
51.
Johnson
,
D.
, and
Rose
,
W.
,
1975
, “
Laser Velocimeter and Hot Wire Anemometer Comparison in a Supersonic Boundary Layer
,”
AIAA J.
,
13
, pp.
512
515
.
52.
Muck, K., Spina, E., and Smits, A., 1984, “Compilation of Turbulence Data for an 8 Degree Compression Corner at Mach 2.9,” Report MAE-1642.
53.
Zheltovodov, A. A., and Yakovlev, V. N., 1986, “Stages of Development, Gas Dynamic Structure and Turbulence Characteristics of Turbulent Compressible Separated Flows in the Vicinity of 2-D Obstacles,” Preprint No. 27-86, Inst. of Theoretical and Applied Mechanics, USSR Acad. of Sciences, Novosibirsk (in Russian).
54.
Konrad, W., 1993, “Three Dimensional Supersonic Turbulent Boundary Layer Generated by an Isentropic Compression,” Ph.D. thesis, Princeton University, Princeton, NJ.
55.
Konrad
,
W.
, and
Smits
,
A.
,
1998
, “
Turbulence Measurements in a Three-Dimensional Boundary Layer in a Supersonic Flow
,”
J. Fluid Mech.
,
372
, pp.
1
23
.
56.
Adams, N. A., 1997, “Direct Numerical Simulation of Turbulent Supersonic Boundary Layer Flow,” Advances in DNS/LES, Greyden Press, pp. 29–40.
57.
Simpson
,
R. L.
,
Whitten
,
D. G.
, and
Moffat
,
R. J.
,
1970
, “
An Experimental Study of the Turbulent Prandtl Number of Air With Injection and Suction
,”
Int. J. Heat Mass Transf.
,
13
, pp.
125
143
.
58.
Zheltovodov, A. A., Trofinov, V. M., Schu¨len, E., and Vakovlev, V., 1990, “An Experimental Documentation of Supersonic Turbulent Flows in the Vicinity of Forward- and Backward-Facing Ramps,” Report No. 2030, Institute of Theoretical and Applied Mechanics, USSR Academy of Sciences.
59.
Meier
,
H. U.
, and
Rotta
,
J. C.
,
1971
, “
Temperature Distributions in Supersonic Turbulent Boundary Layer
,”
AIAA J.
,
9
, pp.
2149
2150
.
60.
Horstman
,
C. C.
, and
Owen
,
F. K.
,
1972
, “
Turbulent Properties of a Compressible Boundary Layer
,”
AIAA J.
,
10
, pp.
1418
1424
.
You do not currently have access to this content.