Many engineering and environmental system analyses can benefit from appropriate modeling of turbulent flow in porous media. Through the volumetric averaging of the microscopic transport equations for the turbulent kinetic energy, k, and its dissipation rate, ε, a macroscopic model was proposed for such media (IJHMT, 44(6), 1081-1093, 2001). In that initial work, the medium was simulated as an infinite array of cylindrical rods. As an outcome of the volume averaging process, additional terms appeared in the equations for k and ε. These terms were here adjusted assuming now the porous structure to be modeled as an array of elliptic rods instead. Such an adjustment was obtained by numerically solving the microscopic flow governing equations, using a low Reynolds formulation, in the periodic cell composing the medium. Different porosity and Reynolds numbers were investigated. The fine turbulence structure of the flow was computed and integral parameters were presented. The adjusted model constant was compared to similar results for square and cylindrical rods. It is expected that the contribution herein provide some insight to modelers devoted to the analysis of engineering and a environmental systems characterized by a porous structure saturated by a fluid flowing in turbulent regime.

1.
Darcy, H., 1856, Les Fontaines Publiques de la Vile de Dijon, Victor Dalmond, Paris.
2.
Forchheimer
,
P.
,
1901
, “
Wasserbewegung durch Boden
,”
Z. Ver. Deutsch. Ing.
45
, pp.
1782
1788
.
3.
Brinkman
,
H. C.
,
1947
, “
A Calculation of the Viscous Force Exerted by a Flowing Fluid on a Dense Swarm of Particles,
Appl. Sci. Res.
,
A1
, pp.
27
34
.
4.
Ward
,
J. C.
,
1964
, “
Turbulent Flow in Porous Media
,”
J. Hydraul. Div. Am. Soc. Civ. Eng.
90
, pp,
1
12
.
5.
Whitaker
,
S.
,
1969
, “
Advances in Theory of Fluid Motion in Porous Media
,”
Ind. Eng. Chem.
,
61
, pp.
14
28
.
6.
Bear, J., 1972, Dynamics of Fluids in Porous Media, American Elsevier, New York.
7.
Vafai
,
K.
, and
Tien
,
C. L.
,
1981
, “
Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transf.
,
24
, pp.
195
203
.
8.
Whitaker, S., 1999, The Method of Volume Averaging, Kluwer Academic Publishers, Dordrecht,
9.
Prausnitz
,
J. M.
, and
Wilhelm
,
R. H.
,
1957
, “
Turbulent Concentrations Fluctuations in a Packed Bed
,”
Ind. Eng. Chem.
,
49
, pp.
237
246
.
10.
Mickley
,
H. S.
,
Smith
,
K. A.
, and
Korchak
,
E. I.
,
1965
, “
Fluid Flow in Packed Beds
,”
Chem. Eng. Sci.
,
20
, pp.
237
246
.
11.
Lee, K., and Howell, J. R., 1987, “Forced Convective and Radiative Transfer Within a Highly Porous Layer Exposed to a Turbulent External Flow Field,” Proc. of the 1987 ASME-JSME Thermal Eng. Joint Conf., Vol. 2, pp. 377–386.
12.
Wang
,
H.
, and
Takle
,
E. S.
,
1995
, “
Boundary-Layer Flow and Turbulence Near Porous Obstacles
,”
Boundary-Layer Meteorol.
,
74
, pp.
73
88
.
13.
Antohe
,
B. V.
, and
Lage
,
J. L.
,
1997
, “
A General Two-Equation Macroscopic Turbulence Model for Incompressible Flow in Porous Media
,”
Int. J. Heat Mass Transf.
,
40
, pp.
3013
3024
.
14.
Getachew
,
D.
,
Minkowycz
,
W. J.
, and
Lage
,
J. L.
,
2000
, “
A Modied Form of the k-ε Model for Turbulent Flow of an Incompressible Fluid in Porous Media
,”
Int. J. Heat Mass Transf.
,
43
, pp.
2909
2915
.
15.
Masuoka
,
T.
, and
Takatsu
,
Y.
,
1996
, “
Turbulence Model for Flow Through Porous Media
,”
Int. J. Heat. Mass Transfer
,
39
, pp.
2803
2809
.
16.
Kuwahara
,
F.
,
Kameyama
,
Y.
,
Yamashita
,
S.
, and
Nakayama
,
A.
,
1998
, “
Numerical Modeling of Turbulent Flow in Porous Media Using a Spatially Periodic Array
,”
J. Porous Media
1
, pp.
47
55
.
17.
Kuwahara, F., and Nakayama, A., 1998, “Numerical Modeling of Non-Darcy Convective Flow in a Porous Medium,” Proc. 11th Int. Heat Transf. Conf., Kyongyu, Korea, Aug. 23–28.
18.
Takatsu
,
Y.
, and
Masuoka
,
T.
,
1998
, “
Turbulent Phenomena in Flow Through Porous Media
,
J. Porous Media
,
3
, pp.
243
251
.
19.
Nakayama
,
A.
, and
Kuwahara
,
F.
,
1999
, “
A Macroscopic Turbulence Model for Flow in a Porous Medium
,”
ASME J. Fluids Eng.
,
121
, pp.
427
433
.
20.
Travkin, V. S., and Catton, I., 1992, “Model of Turbulent Thermal Diffusivity and Transfer Coefficients for a Regular Packed Bed of Spheres,” Proc. 28th National Heat Transfer Conference, San Diego, C-4, ASME-HTD-193, pp. 15–23.
21.
Travkin, V. S., Catton, I., and Gratton, L., 1993, “Single-Phase Turbulent Transport in Prescribed Non-Isotropic and Stochastic Porous Media,” Heat Transfer in Porous Media, ASME-HTD-240, pp. 43–48.
22.
Gratton, L., Travkin, V. S., and Catton, I., 1994, “Numerical Solution of Turbulent Heat and Mass Transfer in a Stratified Geostatistical Porous Layer for High Permeability Media,“ ASME Proceedings HTD-vol.. 41, pp. 1–14.
23.
Travkin
,
V. S.
, and
Catton
,
I.
,
1995
, “
A Two Temperature Model for Turbulent Flow and Heat Transfer in a Porous Layer
,”
ASME J. Fluids Eng.
,
117
, pp.
181
188
.
24.
Travkin
,
V. S.
, and
Catton
,
I.
,
1998
, “
Porous Media Transport Descriptions- Non-Local, Linear and Non-Linear Against Effective Thermal/Fluid Properties
,”
Adv. Colloid Interface Sci.
,
76-77
, pp.
389
443
.
25.
Travkin, V. S., Hu, K., and Catton, I., 1999, “Turbulent Kinetic Energy and Dissipation Rate Equation Models for Momentum Transport in Porous Media,” Proc. 3rd ASME/JSME Joint Fluids Engineering Conference (on CD-ROM), Paper FEDSM99-7275, San Francisco, California, 18–23 July.
26.
Pedras, M. H. J., and de Lemos, M. J. S., 1998, “Results for Macroscopic Turbulence Modeling for Porous Media,” Proc. of ENCIT98-7th Braz. Cong. Eng. Th. Sci., Vol. 2, pp. 1272–1277, Rio de Janeiro, Brazil, November 3-6 (in Portuguese).
27.
Pedras, M. H. J., and de Lemos, M. J. S., 1999, On Volume and Time Averaging of Transport Equations for Turbulent Flow in Porous Media, Proc. of 3rd ASME/JSME Joint Fluids Engineering Conferernce (on CDROM), ASME-FED-248, Paper FEDSM99-7273, ISBN 0-7918-1961-2, San Francisco, CA, July 18–25.
28.
Pedras, M. H. J., and de Lemos, M. J. S., 1999; “Macroscopic Turbulence Modeling for Saturated Porous Media,” Proc. of COBEM99-15th Braz. Congr. Mech. Eng. (on CD-ROM), ISBN: 85-85769-03-3, A´guas de Lindo´ia, Sa˜o Paulo, Brazil, November 22–26 (in Portuguese).
29.
Pedras
,
M. H. J.
, and
de Lemos
,
M. J. S.
,
2000
, “
On the Definition of Turbulent Kinetic Energy for Flow in Porous Media
,”
Int. Commun. Heat Mass Transfer
,
27
, No.
2
, pp.
211
220
.
30.
de Lemos, M. J. S., and Pedras, M. H. J. 2000, “Modeling Turbulence Phenomena in Incompressible Flow Through Saturated Porous Media,” Proc. of 34th ASME-National Heat Transfer Conference (on CD-ROM), ASME-HTD-I463CD, Paper NHTC2000-12120, ISBN:0-7918-1997-3, Pittsburgh, PA, August 20-22.
31.
Pedras
,
M. H. J.
, and
de Lemos
,
M. J. S.
,
2001
, “
Macroscopic Turbulence Modeling for Incompressible Flow Through Undeformable Porous Media
,”
Int. J. Heat Mass Transf.
,
44
, No.
6
, pp.
1081
1093
.
32.
Rocamora Jr., F. D., and de Lemos, M. J. S., 1998, “Numerical Solution of Turbulent Flow in Porous Media Using a Spatially Periodic Array and the k-ε Model,” Proc. ENCIT-98 - 7th Braz. Cong. Eng. Th. Sci., Vol. 2, pp. 1265–1271, Rio de Janeiro, RJ, Brazil, November 3–6.
33.
Pedras, M. H. J., and de Lemos, M. J. S., 2000, “Numerical Solution of Turbulent Flow in Porous Media using a Spatially Periodic Cell and the Low Reynolds k-ε Model,” Proc. of CONEM2000 - National Mechanical Engineering Congress (on CD-ROM), Natal, Rio Grande do Norte, Brazil, August 7–11 (in Portuguese).
34.
Pedras
,
M. H. J.
, and
de Lemos
,
M. J. S.
,
2001
, “
Simulation of Turbulent Flow in Porous Media Using a Spatially Periodic Array and a Low Re Two-Equation Closure
,”
Numer. Heat Transfer, Part A
,
39
, No.
1
, pp.
35
59
.
35.
Rocamora, Jr., F. D., and de Lemos, M. J. S., 1999, “Simulation of Turbulent Heat Transfer in Porous Media Using a Spatially Periodic Cell and the k-ε Model,” Proc. of COBEM99 - 15th Braz. Congr. Mech. Eng. (on CD-ROM), ISBN: 86-85769-03-3, A´guas de Lindo´ia, Sa˜o Paulo, Brazil, Nov. 22–26.
36.
Rocamora
, Jr.,
F. D.
, and
de Lemos
,
M. J. S.
,
2000
, “
Analysis Of Convective Heat Transfer For Turbulent Flow in Saturated Porous Media
,”
Int. Commun. Heat Mass Transfer
,
27
, pp.
825
834
.
37.
Rocamora Jr., and de Lemos, M. J. S., 2001, “Turbulence Modeling For Non-Isothermal Flow in Undeformable Porous Media,” Proc. of NHTC’01, 35th National Heat Transfer Conference, ASME-HTD-I495CD, Paper NHTC2001-20178, ISBN: 0-7918-3527-8, Anaheim, California, June 10–12.
38.
de Lemos, M. J. S., and Pedras, M. H. J., 2000, “Simulation of Turbulent Flow Through Hybrid Porous Medium-Clear Fluid Domains,” Proc. of IMECE2000-ASME-Intern. Mech. Eng. Congr., ASME-HTD-366-5, pp. 113–122, ISBN:0-7918-1908-6, Orlando, FL, November 5–10.
39.
Rocamora, Jr., F. D., and de Lemos, M. J. S., 2000, Prediction of Velocity and Temperature Profiles for Hybrid Porous Medium-Clean Fluid Domains, “Proc. of CONEM2000—National Mechanical Engineering Congress (on CD-ROM), Ntal, Rio Grande do Norte, Brazil, August 7–11.
40.
Rocamora, Jr., F. D., and de Lemos, M. J. S., 2000, “Laminar Recirculating Flow And Heat Transfer In Hybrid Porous Medium-Clear Fluid Computational Domains,” Proc. of 34th ASME-National Heat Transfer Conference (on CD-ROM), ASME-HTD-I463CD, Paper NHTC2000-12317, ISBN:0-7918-1997-3, Pittsburgh, PA, August 20–22.
41.
Rocamora, Jr., F. D., and de Lemos, M. J. S., 2000, “Heat Transfer In Suddenly Expanded Flow in a Channel With Porous Inserts,” Proc. of IMECE2000 - ASME - Intern. Mech. Eng. Congr., ASME-HTD-366-5, pp. 191–195, ISBN:0-7918-1908-6, Orlando, FL, November 5–10.
42.
Pedras, M. H. J., and de Lemos, M. J. S., 1998, “Analysis of Flow in Porous Media Via Volumetric Averaging of the Navier-Stokes Equations,” Proc. of ENCIT98- 7th Braz. Cong. Eng. Th. Sci., Vol. 2, pp. 1278–1283, Rio de Janiero, Brazil, November 3–6 (in Portuguese).
43.
Macdonald
,
I. F.
,
El-Sayed
,
M. S.
,
Mow
,
K.
, and
Dullien
,
F. A. L.
,
1979
, “
Flow Through Porous Media: The Ergun Equation Revisited
,”
Indust. Chem. Fundam.
18
, pp.
199
208
.
44.
Kececiooglu
,
I.
, and
Jiang
,
Y.
,
1994
, “
Flow Through Porous Media of Packed Spheres Saturated With Water
,”
ASME J. Fluids Eng.
,
116
, pp.
164
170
.
45.
Lage, J. L., 1998, “The Fundamental Theory of Flow Through Permeable Media From Darcy to Turbulence,” in Transport Phenomena in Porous Media, D. B. Ingham and I. Pop, eds., Elsevier Science Ltd., ISBN: 0-08-042843-6, 446 pgs.
46.
de Lemos, M. J. S., and Pedras M. H. J., 2001, “Alternative Transport Equations for Turbulent Kinetic Energy for Flow in Porous Media,” Prof. of NHTC01, 35th Nat. Heat Transfer Conf. ASME-HTD-I49SCD Paper NHTC01-20177, ISBN: 0-7918-3527-8, Anaheim, California, June 10–12.
47.
de Lemos, M. J. S., and Pedras, M. H. J., 2001, “Recent Mathematical Models For Turbulent Flow In Saturated Rigid Porous Media,” ASME Journal of Fluids Engineering.
48.
Abe
,
K.
,
Nagano
, and
Y.
,
Kondoh
,
T.
,
1992
, “
An Improved k-ε Model for Prediction of Turbulent Flows With Separation and Reattachment
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
,
58
, pp.
3003
3010
.
49.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
, pp.
269
289
.
50.
Patankar, S. V., 1980, Numerical Heat Transfer And Fluid Flow, Hemisphere, New York.
51.
Pedras, M. H. J., and de Lemos, M. J. S., 2001, “Adjustment of a Macroscopic Turbulence Model for a Porous Medium Formed by an Infinite Array of Elliptic Rods, 2nd International Conference on Computational Heat and Mass Transfer, Rio de Janeiro, Brazil, October 22–26.
52.
Pedras, M. H. J., and de Lemos, M. J. S., 2001, “Soluc¸a˜o Nume´rica do Escoamento Turbulento num Meio Poroso Formado por Hastes Elı´pticas - Aplicac¸a˜o do Modelo k-ε Para baixo e Alto Reynolds,” Proc of COBEMOI - 16th Braz. Congr. Mech. Eng., (on CDROM) Uberla^ndia, MG, Brazil, November 26–30.
You do not currently have access to this content.