During the magnetically-stabilized liquid-encapsulated Czochralski (MLEC) process, a single compound semiconductor crystal is grown by the solidification of an initially molten semiconductor (melt) contained in a crucible. The melt is doped with an element in order to vary the electrical and/or optical properties of the crystal. During growth, the so-called melt-depletion flow caused by the opposing relative velocities of the encapsulant-melt interface and the crystal-melt interface can be controlled with an externally applied magnetic field. The convective dopant transport during growth driven by this melt motion produces nonuniformities of the dopant concentration in both the melt and the crystal. This paper presents a model for the unsteady transport of a dopant during the MLEC process with an axial magnetic field. Dopant distributions in the crystal and in the melt at several different stages during growth are presented.

1.
Hurle, D. T. J., and Series, R. W., 1994, “Use of a magnetic field in melt growth,” Handbook of Crystal Growth, D. T. J. Hurle, ed., Elsevier Science Publishers, Vol. 2A, pp. 261–285.
2.
Walker, J. S., 1999, “Models of Melt Motion, Heat Transfer, and Mass Transport during Crystal Growth with Strong Magnetic Fields,” The Role of Magnetic Fields in Crystal Growth, Progress in Crystal Growth and Characterization of Materials, K. W. Benz, ed., Elsevier Science Publishers, Vol. 38, pp. 195–213.
3.
Bliss
,
D. F.
,
Hilton
,
R. M.
,
Bachowski
,
S.
, and
Adamski
,
J. A.
,
1991
, “
MLEK Crystal Growth of (100) Indium Phosphide
,”
J. Cryst. Growth
,
20
, pp.
967
971
.
4.
Bliss
,
D. F.
,
Hilton
,
R. M.
, and
Adamski
,
J. A.
,
1993
, “
MLEK Crystal Growth of Large Diameter (100) Indium Phosphide
,”
J. Cryst. Growth
,
128
, pp.
451
456
.
5.
Ma
,
N.
, and
Walker
,
J. S.
,
1997
, “
Dopant Transport during Semiconductor Crystal Growth with Magnetically Damped Buoyant Convection
,”
J. Cryst. Growth
,
172
, pp.
124
135
.
6.
Ma
,
N.
, and
Walker
,
J. S.
,
1997
, “
Validation of Strong Magnetic Field Asymptotic Models for Dopant Transport in Semiconductor Crystal Growth
,”
J. Cryst. Growth
,
180
, pp.
401
409
.
7.
Hirtz
,
J. M.
, and
Ma
,
N.
,
2000
, “
Dopant transport during semiconductor crystal growth. Axial versus transverse magnetic fields
,”
J. Cryst. Growth
,
210
, pp.
554
572
.
8.
Ma
,
N.
, and
Walker
,
J. S.
,
2000
, “
A Model of Dopant Transport during Bridgman Crystal Growth with Magnetically Damped Buoyant Convection
,”
ASME J. Heat Transfer
,
122
, pp.
159
164
.
9.
Bryant, G. G., Bliss, D. F., Leahy, D., Lancto, R., Ma, N., and Walker, J. S., 1997, “Crystal Growth of Bulk InP from Magnetically Stabilized Melts with a Cusped Field,” IEEE Proceedings of the International Conference on Indium Phosphide and Related Materials, Hyannis, Cape Cod, MA.
10.
Ma
,
N.
,
Walker
,
J. S.
,
Bliss
,
D. F.
, and
Bryant
,
G. G.
,
1998
, “
Forced convection during liquid encapsulated crystal growth with an axial magnetic field
,”
ASME J. Fluids Eng.
,
120
, pp.
844
850
.
11.
Ma
,
N.
, and
Walker
,
J. S.
,
2001
, “
Inertia and Thermal Convection during Crystal Growth with a Steady Magnetic Field
,”
AIAA Journal of Thermophysics and Heat Transfer
,
15
, pp.
50
54
.
12.
Hjellming
,
L. N.
, and
Walker
,
J. S.
,
1987
, “
Melt Motion in a Czochralski Puller with an Axial Magnetic Field: Motion due to Buoyancy and Thermocapillarity
,”
J. Fluid Mech.
,
182
, pp.
335
368
.
13.
Hurle, D. T. J., 1993, Crystal Pulling from the Melt, Springer-Verlag, New York.
14.
Hjellming
,
L. N.
, and
Walker
,
J. S.
,
1988
, “
Melt Motion in a Czochralski Crystal Puller with an Axial Magnetic Field: Uncertainty in the Thermal Constants
,”
J. Cryst. Growth
,
87
, pp.
18
32
.
You do not currently have access to this content.