The unsteady nature of vortex structures has been investigated by a large eddy simulation (LES) in a propeller fan with a shroud covering only the rear region of its rotor tip. The simulation shows that the tip vortex plays a major role in the structure and unsteady behavior of the vortical flow in the propeller fan. The spiral-type breakdown of the tip vortex occurs near the midpitch, leading to significant changes in the nature of the tip vortex. The breakdown gives rise to large and cyclic movements of the tip vortex, so that the vortex impinges cyclically on the pressure surface of the adjacent blade. The movements of the tip vortex cause the leading edge separation vortex to oscillate in a cycle, but on a small scale. The movements of the vortex structures induce high-pressure fluctuations on the rotor blade and in the blade passage.

1.
Schlechtriem, S., and Lotzerich, M., 1997, “Breakdown of Tip Leakage Vortices in Compressors at Flow Conditions Close to Stall,” ASME Paper No. 97-GT-41.
2.
Furukawa
,
M.
,
Saiki
,
K.
,
Nagayoshi
,
K.
,
Kuroumaru
,
M.
, and
Inoue
,
M.
,
1998
, “
Effects of Stream Surface Inclination on Tip Leakage Flow Fields in Compressor Rotors
,”
ASME J. Turbomach.
,
120
, No.
4
, pp.
683
694
.
3.
Furukawa
,
M.
,
Inoue
,
M.
,
Saiki
,
K.
, and
Yamada
,
K.
,
1999
, “
The Role of Tip Leakage Vortex Breakdown in Compressor Rotor Aerodynamics
,”
ASME J. Turbomach.
,
121
, No.
3
, pp.
469
480
.
4.
Furukawa, M., Saiki, K., Yamada, K., and Inoue, M., 2000, “Unsteady Flow Behavior Due to Breakdown of Tip Leakage Vortex in an Axial Compressor Rotor at Near-Stall Condition,” ASME Paper No. 2000-GT-0666.
5.
Sarpkaya
,
T.
,
1971a
, “
On Stationary and Traveling Vortex Breakdowns
,”
J. Fluid Mech.
,
45
, pp.
545
559
.
6.
Sarpkaya
,
T.
,
1971b
, “
Vortex Breakdown in Swirling Conical Flows
,”
AIAA J.
,
9
, No.
9
, pp.
1792
1799
.
7.
Hall
,
M. G.
,
1972
, “
Vortex Breakdown
,”
Annu. Rev. Fluid Mech.
,
4
, pp.
195
218
.
8.
Leivovich
,
S.
,
1978
, “
The Structure of Vortex Breakdown
,”
Annu. Rev. Fluid Mech.
,
10
, pp.
211
246
.
9.
Leivovich
,
S.
,
1984
, “
Vortex Stability and Breakdown: Survey and Extension
,”
AIAA J.
,
22
, No.
9
, pp.
1192
1206
.
10.
Escudier
,
M.
,
1988
, “
Vortex Breakdown: Observations and Explanations
,”
Prog. Aerosp. Sci.
,
25
, No.
2
, pp.
189
229
.
11.
Bru¨cker
,
C.
, and
Althaus
,
W.
,
1992
, “
Study of Vortex Breakdown by Particle Tracking Velocimetry (PTV) Part 1: Bubble-Type Vortex Breakdown
,”
Exp. Fluids
,
13
, pp.
339
349
.
12.
Bru¨cker
,
C.
,
1993
, “
Study of Vortex Breakdown by Particle Tracking Velocimetry (PTV) Part 2: Spiral-Type Vortex Breakdown
,”
Exp. Fluids
,
14
, pp.
133
139
.
13.
Delery
,
J. M.
,
1994
, “
Aspects of Vortex Breakdown
,”
Prog. Aerosp. Sci.
,
30
, No.
1
, pp.
1
59
.
14.
Akaike
,
S.
, and
Kikuyama
,
K.
,
1993
, “
Noise Reduction of Pressure Type Fans for Automobile Air Conditioners
,”
ASME J. Vibr. Acoust.
,
115
, pp.
216
220
.
15.
Inoue, M., Wu, K-C., Kuroumaru, M., Furukawa, M., Fukuhara, M., and Ikui, T., 1984, “A Design of Diagonal Impeller by Means of SCM and Cascade Data,” Proceedings of China-Japan Joint Conference on Hydraulic Machinery and Equipment, Vol. 1, pp. 21–30.
16.
Sawada
,
K.
,
1995
, “
A Convenient Visualization Method for Identifying Vortex Centers
,”
Trans. Japan Soc. of Aero. Space Sci.
,
38
, No.
120
, pp.
102
116
.
You do not currently have access to this content.