Three-dimensional structures of the vortical flow field in a propeller fan with a shroud covering only the rear region of its rotor tip have been investigated by experimental analysis using laser Doppler velocimetry (LDV) measurements and by numerical analysis using a large eddy simulation (LES) in Part I of the present study. The propeller fan has a very complicated vortical flow field near the rotor tip compared with axial fan and compressor rotors. It is found that three vortex structures are formed near the rotor tip: the tip vortex, the leading edge separation vortex, and the tip leakage vortex. The tip vortex is so strong that it dominates the flow field near the tip. Its formation starts from the blade tip suction side near the midchord. Even at the design condition the tip vortex convects nearly in the tangential direction, thus impinging on the pressure surface of the adjacent blade. The leading edge separation vortex develops close along the tip suction surface and disappears in the rear region of the rotor passage. The tip leakage vortex is so weak that it does not affect the flow field in the rotor.

1.
Fukano
,
T.
,
Fukuhara
,
M.
,
Kawagoe
,
K.
,
Hara
,
Y.
, and
Kinoshita
,
K.
,
1990
, “
Experimental Study on the Noise Reduction of a Propeller Fan, 1st Report, Aerodynamic Characteristics
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
,
56
, No.
531
, pp.
3378
3382
(in Japanese).
2.
Fukano
,
T.
,
Kawagoe
,
K.
,
Fukuhara
,
M.
,
Hara
,
Y.
, and
Kinoshita
,
K.
,
1990
, “
Experimental Study on the Noise Reduction of a Propeller Fan, 2nd Report, Noise Characteristics
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
,
56
, No.
531
, pp.
3383
3388
(in Japanese).
3.
Sato, S., and Kinoshita, K., 1993, “Improvement in Performance of Propeller Fans for Outdoor Units of Airconditioners,” Proceeding of the 4th Asian International Conference on Fluid Machinery, Vol. 1, pp. 166–170.
4.
Akaike
,
S.
, and
Kikuyama
,
K.
,
1993
, “
Noise Reduction of Pressure Type Fans for Automobile Air Conditioners
,”
ASME J. Vibr. Acoust.
,
115
, pp.
216
220
.
5.
Akaike
,
S.
,
Kuroki
,
S.
, and
Katagiri
,
M.
,
1991
, “
Noise Reduction of Radiator Cooling Fan for Automobile—Three-Dimensional Analysis of the Flow Between the Blades of the Fan-
,”
JSAE (Society of Automotive Engineers of Japan)
,
22
, No.
3
, pp.
79
84
(in Japanese).
6.
Longhouse
,
R. E.
,
1978
, “
Control of Tip-Vortex Noise of Axial Flow Fans by Rotating Shrouds
,”
J. Sound Vib.
,
58
, No.
2
, pp.
201
214
.
7.
Inoue, M., Wu, K-C., Kuroumaru, M., Furukawa, M., Fukuhara, M., and Ikui, T., 1984, “A Design of Diagonal Impeller by Means of SCM and Cascade Data,” Proceedings of China-Japan Joint Conference on Hydraulic Machinery and Equipment, Vol. 1, pp. 21–30.
8.
http://fluid.mech.kyushu-u.ac.jp/fan/web_propeller_fan.html
9.
Snyder
,
P. K.
,
Orloff
,
K. L.
, and
Reinath
,
M. S.
,
1984
, “
Reduction of Flow-Measurement Uncertainties in Laser Velocimeters with Nonorthogonal Channels
,”
AIAA J.
,
22
, No.
8
, pp.
1115
1123
.
10.
Furukawa
,
M.
,
Yamasaki
,
M.
, and
Inoue
,
M.
,
1991
, “
A Zonal Approach for Navier-Stokes Computations of Compressible Cascade Flow Fields Using a TVD Finite Volume Method
,”
ASME J. Turbomach.
,
113
, pp.
573
582
.
11.
Chakravarthy, S. R., 1986, “The Versatility and Reliability of Euler Solvers Based on High-Accuracy TVD Formulations,” AIAA Paper No. 86-0243.
12.
Anderson
,
W. K.
,
Thomas
,
J. L.
, and
van Leer
,
B.
,
1986
, “
Comparison of Finite Volume Flux Vector Splittings for the Euler Equations
,”
AIAA J.
,
24
, No.
9
, pp.
1453
1460
.
13.
Van Leer, B., Thomas, J. L., and Newsome, R. W., 1987, “A Comparison of Numerical Flux Formulas for the Euler and Navier-Stokes Equations,” AIAA Paper No. 87-1104.
14.
Swanson, R. C., and Turkel, E., 1993, “Aspects of a High-Resolution Scheme for the Navier-Stokes Equations,” AIAA Paper No. 93-3372-CP.
15.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
, pp.
357
372
.
16.
Osher
,
S.
, and
Chakravarthy
,
S. R.
,
1983
, “
Upwind Schemes and Boundary Conditions with Applications to Euler Equations in General Coordinates
,”
J. Comput. Phys.
,
50
, pp.
447
481
.
17.
Furukawa
,
M.
,
Nakano
,
T.
, and
Inoue
,
M.
,
1992
, “
Unsteady Navier-Stokes Simulation of Transonic Cascade Flow Using an Unfactored Implicit Upwind Relaxation Scheme With Inner Iterations
,”
ASME J. Turbomach.
,
114
, pp.
599
606
.
18.
Furukawa, M., Saiki, K., and Inoue, M., 1995, “Numerical Simulation of Three-Dimensional Viscous Flow in Diagonal Flow Impeller,” Numerical Simulations in Turbomachinery, ASME FED-Vol. 227, pp. 29–36.
19.
Chakravarthy, S. R., 1984, “Relaxation Methods for Unfactored Implicit Upwind Schemes,” AIAA Paper No. 84-0165.
20.
Inoue, M., and Furukawa, M., 1994, “Artificial Dissipative and Upwind Schemes for Turbomachinery Blade Flow Calculations,” VKI, Lecture Series, No. 1994-06.
21.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments with the Primitive Equations. I. The Basic Experiment
,”
Mon. Weather Rev.
,
91
, pp.
99
165
.
22.
Sawada
,
K.
,
1995
, “
A Convenient Visualization Method for Identifying Vortex Centers
,”
Trans. Japan Soc. of Aero. Space Sci.
,
38
, No.
120
, pp.
102
116
.
23.
Furukawa
,
M.
,
Inoue
,
M.
,
Saiki
,
K.
, and
Yamada
,
K.
,
1999
, “
The Role of Tip Leakage Vortex Breakdown in Compressor Rotor Aerodynamics
,”
ASME J. Turbomach.
,
121
, No.
3
, pp.
469
480
.
24.
Inoue, M., Furukawa, M., Saiki, K., and Yamada, K., 1998, “Physical Explanations of Tip Leakage Flow Field in an Axial Compressor Rotor,” ASME paper No. 98-GT-91.
25.
Levy
,
Y.
,
Degani
,
D.
, and
Seginer
,
A.
,
1990
, “
Graphical Visualization of Vortical Flows by Means of Helicity
,”
AIAA J.
,
28
, pp.
1347
1352
.
26.
Furukawa
,
M.
,
Saiki
,
K.
,
Nagayoshi
,
K.
,
Kuroumaru
,
M.
, and
Inoue
,
M.
,
1998
, “
Effects of Stream Surface Inclination on Tip Leakage Flow Fields in Compressor Rotors
,”
ASME J. Turbomach.
,
120
, No.
4
, pp.
683
694
.
27.
Baldwin, B. S., and Lomax, H., 1978, “Thin Layer Approximation and Algebraic Model for Separated Turbulent Flow,” AIAA Paper No. 78-257.
You do not currently have access to this content.