The method of normal modes is used to examine the stability of an azimuthal base flow to both axisymmetric and plane-polar disturbances for an electrically conducting fluid confined between stationary, concentric, infinitely-long cylinders. An electric potential difference exists between the two cylinder walls and drives a radial electric current. Without a magnetic field, this flow remains stationary. However, if an axial magnetic field is applied, then the interaction between the radial electric current and the magnetic field gives rise to an azimuthal electromagnetic body force which drives an azimuthal velocity. Infinitesimal axisymmetric disturbances lead to an instability in the base flow. Infinitesimal plane-polar disturbances do not appear to destabilize the base flow until shear-flow transition to turbulence.

1.
Stevens, H. O., Superczynski, M. J., Doyle, T. J., Harrison, J. H., and Messinger, H., 1976 “Superconducting machinery for naval ship propulsion,” IEEE Transactions on Magnetics Applications Superconducting Conference, 13, No. 1, pp. 269–274.
2.
Talmage
,
G.
,
Mazumder
,
S.
,
Brown
,
S. H.
, and
Sondergaard
,
N. A.
,
1995
, “
Viscous and Joulean power losses in liquid-metal sliding electrical contacts with finite electrically conducting electrodes
,”
IEEE Transactions on Energy Conversion
,
10
, No.
4
, pp.
634
644
.
3.
Drazin, P. G., and Reid, W. H. 1991, Hydrodynamic Stability, Cambridge University Press.
4.
Taylor
,
G. I.
,
1923
, “
Stability of a viscous liquid contained between two rotating cylinders
,”
Proc. R. Soc. London, Ser. A
,
A223
, pp.
289
343
.
5.
Chandrasekhar
,
F. R. S.
,
1953
, “
The stability of viscous flow between rotating cylinders in the presence of a magnetic field
,”
Proc. R. Soc. London, Ser. A
,
216
, pp.
293
309
.
6.
Donnelly
,
R. J.
, and
Ozima
,
M.
,
1962
, “
Experiments on the stability of flow between rotating cylinders in the presence of a magnetic field
,”
Proc. R. Soc. London, Ser. A
,
266
, pp.
272
286
.
7.
Weinstein
,
M.
,
1990
, “
An analytical solution of the basic Couette flow affected by a three-dimensional magnetic field
,”
J. Franklin Inst.
,
327
, No.
1
, pp.
13
24
.
8.
Chandrasekhar, F. R. S., 1961, Hydrodynamic and Hydomagnetic Stability, Dover, New York, p. 411.
9.
Roberts
,
P. H.
,
1964
, “
The stability of hydromagnetic Couette flow
,”
Proc. Cambridge Philos. Soc.
,
60
, pp.
635
651
.
10.
Chang
,
T. S.
, and
Sartory
,
W. K.
,
1967
, “
On the onset of instability by oscillatory modes in hydromagnetic Couette flow
,”
Proc. R. Soc. London, Ser. A
,
301
, pp.
451
471
.
11.
Soundalgekar
,
V. M.
,
Ali
,
M. A.
, and
Takhar
,
H. S.
,
1994
, “
Hydromagnetic stability of dissipative Couette flow: wide-gap problem
,”
International Journal of Energy Research
,
18
, pp.
689
695
.
12.
Chen
,
C.-K.
, and
Chang
,
M. H.
,
1998
, “
Stability of hydromagnetic dissipative Couette flow with non-axisymmetric disturbance
,”
J. Fluid Mech.
,
366
, pp.
135
158
.
13.
Richardson
,
A. T.
,
1974
, “
On the stability of a magnetically driven rotating fluid flow
,”
J. Fluid Mech.
,
63
, No.
3
, pp.
593
605
.
14.
Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A., 1998, Spectral Methods in Fluids Dynmaics. Springer-Verlag, New York.
15.
Morthland
,
T. E.
, and
Walker
,
J. S.
,
1999
, “
Instability of dynamic thermocapillary liquid layers with magnetic fields
,”
J. Fluid Mech.
,
382
, pp.
87
108
.
16.
Orszag
,
S. A.
,
1971
, “
Accurate solution of the Orr-Sommerfeld stability equation
,”
J. Fluid Mech.
,
50
, No.
4
, pp.
689
703
.
17.
Gibson
,
R. D.
, and
Cook
,
A. E.
,
1974
, “
The stability of curved channel flow
,”
Quarterly J. Mech. Appl. Math.
,
27
, No.
2
, pp.
139
150
.
You do not currently have access to this content.