Simulations of channel flows with effects of spanwise rotation and wall injection are performed using a Reynolds stress model. In this work, the turbulent model is extended for compressible flows and modified for rotation and permeable walls with fluid injection. Comparisons with direct numerical simulations or experimental data are discussed in detail for each simulation. For rotating channel flows, the second-order turbulence model yields an asymmetric mean velocity profile as well as turbulent stresses quite close to DNS data. Effects of spanwise rotation near the cyclonic and anticyclonic walls are well observed. For the channel flow with fluid injection through a porous wall, different flow developments from laminar to turbulent regime are reproduced. The Reynolds stress model predicts the mean velocity profiles, the transition process and the turbulent stresses in good agreement with the experimental data. Effects of turbulence in the injected fluid are also investigated.

1.
Johnston
,
J. P.
,
Halleen
,
R. M.
, and
Lezius
,
D. K.
,
1972
, “
Effects of Spanwise Rotation on the Structure of Two-Dimensional Fully Developed Turbulent Channel Flow
,”
J. Fluid Mech.
,
56
, pp.
533
557
.
2.
Kristoffersen
,
R.
, and
Andersson
,
H. I.
,
1973
, “
Direct simulations of low-Reynolds-number turbulent flow in a rotating channel
,”
J. Fluid Mech.
,
256
, pp.
163
197
.
3.
Lamballais
,
E.
,
Me´tais
,
O.
, and
Lesieur
,
M.
,
1998
, “
Spectral-Dynamic Model for Large-Eddy Simulations of Turbulent Rotating Flow
,”
Theor. Comput. Fluid Dyn.
,
12
, pp.
149
177
.
4.
Chaouat
,
B.
,
1997
, “
Flow Analysis of a Solid Propellant Rocket Motor with Aft Fins
,”
J. Propul. Power
,
13
, No.
2
, pp.
194
196
.
5.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
, pp.
537
566
.
6.
Speziale
,
C. G.
,
Sarkar
,
S.
, and
Gatski
,
T. B.
,
1991
, “
Modelling the Pressure-Strain Correlation of Turbulence: an Invariant Dynamical Systems Approach
,”
J. Fluid Mech.
,
227
, pp.
245
272
.
7.
Gibson
,
M. M.
, and
Launder
,
B. E.
,
1978
, “
Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer
,”
J. Fluid Mech.
,
86
, pp.
491
511
.
8.
So
,
R. M.
,
Lai
,
Y. G.
, and
Zhang
,
H. S.
,
1991
, “
Second Order Near Wall Turbulence Closures: a Review
,”
AIAA J.
,
29
, No.
11
, pp.
1819
1835
.
9.
Hanjalic
,
K.
,
Hadzic
,
I.
, and
Jakilic
,
S.
,
1999
, “
Modeling Turbulent Wall Flows Subjected to Strong Pressure Variations
,”
ASME J. Fluids Eng.
,
121
, pp.
57
64
.
10.
Durbin
,
P. A.
,
1993
, “
A Reynolds Stress Model for Near-Wall Turbulence
,”
J. Fluid Mech.
,
249
, pp.
465
498
.
11.
Launder
,
B. E.
, and
Shima
,
N.
,
1989
, “
Second Moment Closure for the Near Wall Sublayer: Development and Application
,”
AIAA J.
,
27
, No.
10
, pp.
1319
1325
.
12.
Pettersson
,
B. A.
, and
Andersson
,
H. I.
,
1997
, “
Near Wall Reynolds Stress Modelling in Non-inertial Frames of Reference
,”
Fluid Dyn. Res.
,
19
, pp.
251
276
.
13.
Moser
,
R.
,
Kim
,
D.
, and
Mansour
,
N.
,
1999
, “
Direct Numerical Simulation of Turbulent Channel Flow up to Rτ=590,
Phys. Fluids
,
11
, No.
4
, pp.
943
945
.
14.
Avalon, G., 1998, “Flow Instabilities and Acoustic Resonance of Channels with Wall Injection,” AIAA Paper 98-3218, July, In 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.
15.
Chaouat, B., 1999, “Numerical Simulations of Fully Developed Channel Flows Using k-ε, Algebraic and Reynolds Stress Models,” AIAA Paper 99-0158, Jan., In 37th AIAA Aerospace Sciences Meeting and Exhibit.
16.
Shima
,
N.
,
1993
, “
Prediction of Turbulent Boundary Layers with a Second-moment Closure: Part I-Effects of Periodic Pressure Gradient, Wall Transpiration and Free-stream Turbulence. Part II-Effects of Streamline Curvature and Spanwise Rotation
,”
ASME J. Fluids Eng.
,
115
, pp.
56
69
.
17.
Schumann
,
U.
,
1977
, “
Realizability of Reynolds Stress Turbulence Models
,”
Phys. Fluids
,
20
, No.
5
, pp.
721
725
.
18.
Speziale
,
C. G.
,
Abid
,
R.
, and
Durbin
,
P. A.
,
1994
, “
On the Realisability of Reynolds Stress Turbulence Closures
,”
J. Sci. Comput.
,
9
, No.
4
, pp.
369
403
.
19.
Tritton
,
D. J.
,
1992
, “
Stabilization and destabilization of turbulent shear flow in a rotating fluid
,”
J. Fluid Mech.
,
241
, pp.
503
523
.
20.
Sviridenkov
,
A. A.
, and
Yagodkin
,
V. I.
,
1976
, “
Flows in the Initial Sections of Channels with Permeable Walls
,”
Fluid Dyn.
,
11
, pp.
43
48
.
21.
Sabnis, J. S., Madabhushi, R. K., Gibeling, H. J., and Donald, H. M., 1989, “On the Use of k−ε Turbulence Model for Computation of Solid Rocket Internal Flows,” AIAA Paper 89-2558, July, in 25th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.
22.
Chaouat, B., 1997, “Computation using k−ε Model with Turbulent Mass Transfer in the Wall Region,” 11th Symposium on Turbulence Shear Flows, Vol. 2, pp. 2.71–2.76.
23.
Beddini
,
R. A.
,
1986
, “
Injection-Induced Flows in Porous-Walled Ducts
,”
AIAA J.
,
11
, No.
6
, pp.
1766
1773
.
24.
Yamada
,
K.
,
Goto
,
M.
, and
Ishikawa
,
N.
,
1976
, “
Simulative Study on the Erosive Burning of Solid Rocket Motors
,”
AIAA J.
,
14
, No.
9
, pp.
1170
1176
.
25.
Dunlap
,
R.
,
Willoughby
,
P. G.
, and
Hermsen
,
R. W.
,
1974
, “
Flowfield in the Combustion Chamber of a Solid Propellant Rocket Motor
,”
AIAA J.
,
12
, No.
10
, pp.
1440
1443
.
26.
Ramachandran, N., Heaman, J., and Smith, A., 1992, “An Experimental Study of the Fluid Mechanics Associated with Porous Walls,” AIAA Paper 92-0769, Jan., in 30th Aerospace Sciences Meeting and Exhibit.
27.
Myong
,
H.
, and
Kasagi
,
N.
,
1990
, “
A New Approach to the Improvement of k−ε Turbulence Model for Wall-Bounded Shear Flows
,”
JSME Int. J.
,
33
, No.
1
, pp.
63
72
.
You do not currently have access to this content.