Self-gravitational structure formation theory for astrophysics and cosmology is revised using nonlinear fluid mechanics. Gibson’s 1996–2000 theory balances fluid mechanical forces with gravitational forces and density diffusion with gravitational diffusion at critical viscous, turbulent, magnetic, and diffusion length scales termed Schwarz scales. Condensation and fragmentation occur for scales exceeding the largest Schwarz scale rather than LJ, the length scale introduced by Jeans in his 1902 inviscid-linear-acoustic theory. The largest Schwarz scale is often larger or smaller than LJ. From the new theory, the inner-halo 1021m dark-matter of galaxies comprises 105fossil-LJ-scale clumps of 1012 Earth-mass fossil-LSV-scale planets called primordial fog particles (PFPs) condensed soon after the cooling transition from plasma to neutral gas, 300,000 years after the Big Bang, with PFPs tidally disrupted from their clumps forming the interstellar medium. PFPs explain Schild’s 1996 “rogue planetslikely to be the missing mass” of a quasar lens-galaxy, inferred from twinkling frequencies of the quasar mirages, giving 30 million planets per star. The non-baryonic dark matter is super-diffusive and fragments at large LSD scales to form massive outer-galaxy-halos. In the beginning of structure formation 30,000 years after the Big Bang, with photon viscosity values ν of 5×1026m2s1, the viscous Schwarz scale matched the horizon scale LSVLH<LJ, giving 1046kg proto-superclusters and finally 1042kg proto-galaxies. Non-baryonic fluid diffusivities D1028m2s1 from galaxy-outer-halo LSD scales 1022m measured in a dense galaxy cluster by Tyson, J. A., and Fischer, P., 1995, “Measurement of the Mass profile of Abell 1689,” Ap. J., 446, pp. L55–L58, indicate non-baryonic dark matter particles must have small mass 1035kg to avoid detection. [S0098-2202(00)01504-2]

1.
Weinberg, S., 1972, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Wiley, NY.
2.
Zel’dovich, Ya. B., and Novikov, I. D. 1983, The Structure and Evolution of the Universe, G. Steigman, ed., The University of Chicago Press, Chicago.
3.
Silk, Joseph, 1989, The Big Bang, revised and updated edition, W. H. Freeman and Company, NY.
4.
Silk, Joseph, 1994, A Short History of the Universe, Scientific American Library, New York.
5.
Kolb, E. W., and Turner, M. S., 1993, The Early Universe, paperback edition, Addison-Wesley, NY.
6.
Peebles, P. J. E., 1993, Principles of Physical Cosmology, Princeton U. Press, Princeton, NJ.
7.
Padmanabhan, T., 1993, Structure Formation in the Universe, Cambridge U. Press, UK.
8.
Rees, Martin, 2000, New Perspectives in Astrophysical Cosmology, Second Edition, Cambridge U. Press, UK.
1.
Gibson
,
C. H.
,
1996
, “
Turbulence in the ocean, atmosphere, galaxy and universe
,”
Appl. Mech. Rev.
,
49
, pp.
299
316
,
2.
xxx.lanl.gov: astro-ph/9904260.
1.
Jeans
,
J. H.
,
1902
, “
The stability of a spherical nebula
,”
Philos. Trans. R. Soc. London
,
199
, pp.
1
53
.
1.
Gibson
,
C. H.
,
1997
, “Dark matter at viscous-gravitational Schwarz scales: theory and observations,” Dark Matter in Astro- and Particle Physics, H. V. Klapdor-Kleingrothaus and Y. Ramachers, eds., World Scientific, New Jersey, pp. 409–416,
2.
astro-ph/9904284.
1.
Gibson
,
C. H.
,
1997
, “Dark matter formation at Schwarz scales: primordial fog particles and WIMP superhalos,” The Identification of Dark Matter, Neil J. C. Spooner, ed., World Scientific, New Jersey, pp. 114–119,
2.
astro-ph/9904283.
1.
Gibson
,
C. H.
,
1998
, A fluid mechanical explanation of dark matter, Sources and detection of dark matter in the universe, Cline, D. B., ed., Elsevier, North-Holland, pp. 409–411,
2.
astro-ph/9904317.
1.
Gibson
,
C. H.
,
2000
, “Turbulence and diffusion: fossil turbulence,” Encyclopedia of Ocean Science, Steele, Thorpe, and Terekian, eds., to be published,
2.
astro-ph/0003147.
1.
Gibson
,
C. H.
,
2000
, “Primordial viscosity, diffusivity, Reynolds numbers, sound and turbulence at the onset of gravitational structure formation,” astro-ph/9911264.
2.
Gibson
,
C. H.
, and
Schild
,
R. E.
,
2000
, “Quasar-microlensing versus star-microlensing evidence of small-planetary-mass objects as the dominant inner-halo galactic dark matter,” astro-ph/9904362.
3.
Hu
,
Wayne
,
2000
, “
Ringing in the new cosmology
,”
Nature
,
404
, pp.
939
940
.
4.
de Bernardis
,
P.
, et al.
,
2000
, “
A flat Universe from high-resolution maps of the cosmic microwave background radiation
,”
Nature
,
404
,
955
959
.
5.
Guth, Alan H., 1997, The Inflationary Universe, Helix Books, Addison-Wesley, NY.
6.
Gibson
,
C. H.
,
1968
, “
Fine structure of scalar fields mixed by turbulence: I. Zero-gradient points and minimal gradient surfaces
,”
Phys. Fluids
,
11
, pp.
2305
2315
.
7.
Gibson
,
C. H.
,
Ashurst
,
W. T.
, and
Kerstein
,
A. R.
,
1988
, “
Mixing of strongly diffusive passive scalars like temperature by turbulence
,”
J. Fluid Mech.
,
1
, pp.
261
293
.
8.
Gibson
,
C. H.
,
1988
, “
Oceanic and interstellar fossil turbulence, in Radio Wave Scattering in the Interstellar Medium
,”
AIP Conference Proceedings
174
,
R. G.
Lerner
, American Institute of Physics, New York, pp.
74
79
.
9.
Coles, P., ed., 1999, Critical Dictionary of the New Cosmology, Routledge, NY.
10.
Schild
,
R. E.
,
1996
, “
Microlensing variability of the gravitationally lensed quasar Q0957+561 A,B
,”
Astrophys. J.
,
464
, pp.
125
130
.
11.
Tyson
,
J. A.
, and
Fischer
,
P.
,
1995
, “
Measurement of the mass profile of Abell 1689
,”
Ap. J.
,
446
, pp.
L55–L58
L55–L58
.
12.
O’Dell
,
C. R.
, and
Handron
,
K. D.
,
1996
, “
Cometary knots in the Helix Nebula
,”
Astrophys. J.
,
111
, pp.
1630
1640
.
You do not currently have access to this content.