At Re=2000, the predicted flow field around a circular cylinder in forced transverse oscillation is verified with experimental results. For coupled torsional and transverse oscillation cases, the numerical results indicate that lock-in depends on the relative phase between torsional and translational oscillations. The dynamic response of an elastically mounted circular cylinder in cross flow, obtained by solving the structural equations simultaneously with the Navier-Stokes equations, is in reasonable agreement with experimental data. The dynamic response results indicate that the change of wake pattern from 2S to 2P with increased frequency ratio, is not always simultaneous with the change in the relative phase between lift force and cylinder displacement. [S0098-2202(00)02003-4]

1.
Pon
,
C. J.
,
Havard
,
D. G.
,
Currie
,
I. G.
, and
MacDonald
,
R.
,
1989
, Aeolian Vibration of Bundle Conductors, CEA REPORT 117-T-510, March.
2.
Den Hartog
,
J. P.
,
1932
, “
Transmission Line Vibration due to Sleet
,”
AIEE Trans.
,
51
, No.
4
, pp.
1074
1086
.
3.
Blevins, R. D., 1977, Flow-Induced Vibration, Van Nostrand Reinhold, New York.
4.
Zdero
,
R.
,
Turan
,
O¨. F.
, and
Havard
,
D. G.
,
1995
, “
Galloping: Near Wake Study of Oscillating Smooth and Stranded Circular Cylinders in Forced Motion
,”
Exp. Therm. Fluid Sci.
,
10
, pp.
28
43
.
5.
Chang
,
K. S.
, and
Sa
,
J. Y.
,
1992
, “
Patterns of Vortex Shedding from an Oscillating Circular Cylinder
,”
AIAA J.
,
30
, No.
5
, pp.
1331
1336
.
6.
Chilukuri
,
R.
,
1987
, “
Incompressible Laminar Flow Past a Transversely Vibrating Cylinder
,”
ASME J. Fluids Eng.
,
109
, pp.
166
171
.
7.
Hulbert
,
S. E.
,
Spaulding
,
M. L.
, and
White
,
F. M.
,
1982
, “
Numerical Solution of the Time Dependent Navier-Stokes Equations in the Presence of an Oscillating Cylinder
,”
ASME J. Fluids Eng.
,
104
, pp.
201
206
.
8.
Lecointe, Y., and Piquet, J., 1990, Computation of Unsteady, Laminar, Incompressible, Viscous Flows Using the Vorticity Streamfunction Formulation, Computational Methods in Viscous Aerodynamics, Murthy, T. K. S., and Brebbia, C. A., eds., Elsevier and Computational Mechanics, pp. 77–116.
9.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York.
10.
Gaskell
,
P. H.
, and
Lau
,
A. K. C.
,
1988
, “
Curvature-Compensated Convective Transport: Smart, A New Boundedness Preserving Transport Algorithm
,”
Int. J. Numer. Methods Fluids
,
8
, No.
6
, pp.
617
641
.
11.
Leonard
,
B. P.
,
1979
, “
A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Eng.
,
19
, pp.
59
98
.
12.
Hayase
,
T.
,
Humphrey
,
J. A.
, and
Greif
,
R.
,
1992
, “
A Consistently Formulated QUICK Scheme for Fast and Stable Convergence Using Finite-Volume Iterative Calculation Procedures
,”
J. Comput. Phys.
,
98
, pp.
108
118
.
13.
Van Doormaal
,
J. P.
, and
Raithby
,
G. D.
,
1984
, “
Enhancement of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
,
7
, pp.
147
163
.
14.
Lu
,
S.
, and
Turan
,
O¨. F.
,
1996
, “
A FORTRAN Code to Simulate Flow Fields around Oscillating Conductors
,” Departmental Report, MET9608, Mech. Eng. Dept., Victoria University of Technology, Melbourne.
15.
Braza
,
M.
,
Chassaing
,
P.
, and
Ha Minh
,
H.
,
1986
, “
Numerical Study and Physical Analysis of the Pressure and Velocity Fields in the Near Wake of a Circular Cylinder
,”
J. Fluid Mech.
,
165
, pp.
79
130
.
16.
Jordan
,
S. K.
, and
Fromm
,
J. E.
,
1972
, “
Oscillatory Drag, Lift, and Torque on a Circular Cylinder in a Uniform Flow
,”
Phys. Fluids
,
15
,
No. 3
No. 3
.
17.
Batchelor, G. K. 1967, An Introduction to Fluid Dynamics, Cambridge University Press.
18.
Williamson
,
C. H. K.
, and
Roshko
,
A.
,
1988
, “
Vortex Formation in the Wake of an Oscillating Cylinder
,”
J. Fluids Struct.
,
2
, pp.
355
381
.
19.
Feng, C. C., 1988, “The Measurement of Vortex Induced Effects in Flow past Stationary and Oscillating Circular and D-section Cylinders,” M.Sc. thesis, University of British Columbia, Vancouver.
20.
Bishop
,
R. E. D.
, and
Hassan
,
A. Y.
,
1964
, “
The Lift and Drag Forces on a Circular Cylinder Oscillating in a Flowing Fluid
,”
Proc. R. Soc. London, Ser. A
,
277
, pp.
51
75
.
21.
Griffin
,
O. M.
, and
Ramberg
,
S. E.
,
1982
, “
Some Recent Studies of Vortex Shedding with Application to Marine Tubulars and Risers
,”
ASME J. Energy Resour. Technol.
,
104
, pp.
2
13
.
22.
Bearman
,
P. W.
,
1984
, “
Vortex Shedding from Oscillating Bluff Bodies
,”
Annu. Rev. Fluid Mech.
,
16
, pp.
195
222
.
23.
Turan, O¨. F., and Lu, S., 1996, “Numerical prediction of Flow Fields around Circular Cylinders: Forced Motion and Dynamic Response Cases,” ASME Fluids Engineering Division Conference, FED-Vol. 237, pp. 647–652.
You do not currently have access to this content.