A panel-Fourier method for ship-wave flow problems is considered here. It is based on a three-dimensional potential flow model with a linearized free surface condition, and it is implemented by means of a low order panel method coupled to a Fourier-series. The wave-resistance is computed by pressure integration over the static wet hull and the wave-pattern is obtained by a post-processing procedure. The strategy avoids the use of numerical viscosity, in contrast with the Dawson-like methods, widely used in naval-panel codes, therefore a second centered scheme can be used for the discrete operator on the free surface. Numerical results including the wave-pattern for a ferry along fifteen ship-lengths are presented. [S0098-2202(00)01402-4]

1.
Morino
,
L.
, and
Kuo
,
C. C.
,
1974
Subsonic Potential Aerodynamics for Complex Configurations: A General Theory
,”
AIAA J.
12
, pp.
191
197
.
2.
Katz, J., and Plotkin A., 1991, Low-Speed Aerodynamics, From Wing Theory to Panel Methods, Mcgraw-Hill.
3.
Mokry, M., 1990, “Complex Variable Boundary Element Method for External Potential Flows,” 28th Aerospace Sciences Meeting, January 8–11, Reno, Nevada.
4.
Storti
,
M.
,
D’Elı´a
,
J.
, and
Idelsohn
,
S.
,
1995
, “
CVBEM formulation for multiple profiles and cascades
,”
Appl. Mech. Rev.
,
48
, No.
11
, Part 2. pp.
203
210
.
5.
Morino, L., ed., 1985, Computational Methods in Potential Aerodynamics, Springer-Verlag.
6.
Kinnas
,
S. A.
, and
Hsin
,
C. Y.
,
1992
, “
Boundary Element Method for the Analysis of the Unsteady Flow Around Extreme Propeller Geometries
,”
AIAA J.
,
30
, pp.
688
696
.
7.
Dawson, C. W., 1977, “A Practical Computer Method for Solving Ship-Wave Problems” 2nd Int. Conf. on Numerical Ships Hydrodynamics, Berkeley, CA, pp 30–38.
8.
Farmer
,
J.
,
Martinelli
,
L.
, and
Jameson
,
A.
,
1994
, “
Fast Multigrid Method for Solving Incompressible Hydrodynamic Problems with Free Surfaces
,”
AIAA J.
,
32
, No.
6
, June, pp.
1175
1182
.
9.
Stoker, J. J., 1957, Water Waves, Interscience, New York.
10.
van Dyke, M., 1975, Perturbation Methods on Fluid Mechanics, Parabolic Press, Stanford.
11.
Newman
,
J. N.
,
1978
, “
The Theory of Ship Motions
,”
Appl. Mech.
18
, pp.
221
283
.
12.
Baumann
,
C.
,
Storti
,
M.
, and
Idelsohn
,
S.
,
1992
, “
A Petrov-Galerkin technique for the solution of transonic and supersonic flows
,”
Comput. Methods Appl. Mech. Eng.
,
95
, pp.
49
70
.
13.
Nigro
,
N.
,
Storti
,
M.
, and
Idelsohn
,
S.
,
1995
, “
Fluid flows around turbomachinery using an explicit pseudotemporal Euler FEM code
,”
J. Commun. Numer. Methods Eng.
,
11
, pp.
199
211
.
14.
Givoli
,
D.
,
1991
, “
Non-reflecting Boundary Conditions
,”
J. Comput. Phys.
,
94
, pp.
1
29
.
15.
Bonet
,
R.
,
Nigro
,
N.
,
Storti
,
M.
, and
Idelsohn
,
S.
,
1998
, “
A Discrete Non-Local (DNL) Outgoing Boundary Condition for Diffraction of Surface Waves
,”
Commun. Numer. Methods Eng.
,
14
, pp.
849
861
.
16.
Storti
,
M.
,
D’Elı´a
,
X.
, and
Idelsohn
,
S.
,
1998
, “
Algebraic Discrete Non-Local (DNL) Absorbing Boundary Condition for the Ship Wave Resistance Problem
,”
J. Comput. Phys.
,
146
, No.
2
, pp.
570
602
.
17.
Storti
,
M.
,
D’Elı´a
,
J.
, and
Idelsohn
,
S.
,
1998
, “
Computing Ship Wave Resistance from Wave Amplitude with the DNL Absorbing Boundary Condition
,”
Commun. Numer. Methods Eng.
,
14
, pp.
997
1012
.
18.
Storti
,
M.
,
D’Elı´a
,
J.
,
Bonet
,
R.
,
Nigro
,
N.
,
and
Idelsohn
,
S.
,
2000
The DNL Absorbing Boundary Condition. Applications to Wave Problems
,”
Comput. Meth. Appl. Mech. Eng.
182
, (
3-4
), pp.
483
498
.
19.
Broeze
,
J.
, and
Romate
,
J. E.
,
1992
, “
Absorbing Boundary Conditions for Free Surface Wave Simulations with a Panel Method
,”
J. Comput. Phys.
,
99
, pp.
146
158
.
20.
Medina
,
D. E.
, and
Liggett
,
J. A.
,
1988
, “
Three-Dimensional Boundary Element Computation of Potential Flow in Fractured Rock
,”
Int. J. Numer. Methods Eng.
,
26
, pp.
2319
2330
.
21.
D’Elı´a J., 1997, “Numerical Methods for the Ship Wave-Resistance Problem,” Ph.D. thesis, Univ. Nacional del Litoral, Santa Fe, Argentina.
22.
D’Elı´a
,
J.
,
Storti
,
M.
, and
Idelsohn
,
S.
,
2000
Iterative solution of panel discretizations for potential flows. The modal/multipolar preconditioning
,”
Int. J. Numer. Methods Fluids
,
32
, No.
1
, pp.
1
27
.
23.
D’Elı´a
,
J.
,
Storti
,
M.
, and
Idelsohn
,
S.
,
2000
Smoothed Surface Gradients for Panel Methods
,”
Adv. Eng. Soft.
31
, No.
5
, pp.
327
334
.
24.
D’Elı´a
,
J.
,
Storti
,
M.
, and
Idelsohn
,
S.
,
2000
, “
A Closed Form for Low Order Panel Methods
,”
Adv. Eng. Software
31
, No.
5
,
335
341
.
25.
Letcher
,
J. S.
,
1993
, “
Properties of finite-difference operators for the steady-wave problem
,”
J. Ship Res.
,
37
, No.
1
, Mar., pp.
1
7
.
26.
Wehausen
,
J. V.
,
1973
, “
The Wave Resistance of Ships
,”
Adv. Appl. Mech.
,
13
, pp.
93
245
.
You do not currently have access to this content.