Experiments were carried out in an 82.6-mm-dia column with a perforated distributor plate. Conductivity probes on the axis of the column were used to measure local bubble properties in the developing flow region for superficial air velocities from 0.0018 to 6.8 m/s and superficial water velocities from 0 to 0.4 m/s, corresponding to the discrete bubble, dispersed bubble, coalesced bubble, slug, churn, bridging, and annular flow regimes. Bubble frequency increased linearly with gas velocity in the discrete and dispersed bubble regimes. Bubble frequency also increased with gas velocity in the slug flow regime, but decreased in the churn and bridging regimes. Bubble chord length and its distribution were smaller and narrower in the dispersed than in the discrete bubble regime. Both the average and standard deviation of the bubble chord length increased with gas velocity in the discrete, dispersed, and churn flow regimes. However, the average bubble chord length did not change significantly in the slug flow regime due to the high population of small bubbles in the liquid plugs separating Taylor bubbles. The bubble travel length, defined as the product of local gas holdup and local bubble velocity divided by local bubble/void frequency, is used to correlate bubble characteristics and to characterize the flow regimes. [S0098-2202(00)00101-2]

1.
Rigby
,
G. R.
,
Van Blockland
,
G. P.
,
Park
,
W. H.
, and
Capes
,
C. E.
,
1970
, “
Properties of Bubbles in Three Phase Fluidized Beds as Measured by an Electroresistivity Probe
,”
Chem. Eng. Sci.
,
25
, pp.
1729
1741
.
2.
Tutsui
,
T.
, and
Miyauchi
,
T.
,
1980
, “
Fluidity of a Fluidized Catalyst Bed and its Effect on the Behavior of the Bubbles
,”
Int. Chem. Eng.
,
20
, pp.
386
393
.
3.
Ueyama
,
K.
,
Morooka
,
S.
,
Koide
,
K.
,
Kaji
,
H.
, and
Miyauchi
,
T.
,
1980
, “
Behavior of Gas Bubbles in Bubble Columns
,”
Ind. Eng. Chem. Process Des. Dev.
,
19
, pp.
592
599
.
4.
Wittmann
,
K.
,
Helmrich
,
H.
, and
Schu¨gerl
,
K.
,
1981
, “
Measurements of Bubble Properties in Continuously Operated Fluidized Bed Reactors at Elevated Temperatures
,”
Chem. Eng. Sci.
,
36
, pp.
1673
1677
.
5.
Lee
,
S. L. P.
, and
de Lasa
,
H. I.
,
1988
, “
Radial Dispersion Model for Bubble Phenomena in Three-Phase Fluidized Beds
,”
Chem. Eng. Sci.
,
43
, pp.
2445
2449
.
6.
Yu
,
Y. H.
, and
Kim
,
S. D.
,
1988
, “
Bubble Characteristics in the Radial Direction of Three-Phase Fluidized Beds
,”
AIChE. J.
,
34
, pp.
2069
2072
.
7.
Lee
,
S. L. P.
,
Soria
,
A.
, and
de Lasa
,
H. I.
,
1990
, “
Evolution of Bubble Length Distributions in Three-Phase Fluidized Beds
,”
AIChE. J.
,
36
, pp.
1763
1767
.
8.
Han
,
J. H.
, and
Kim
,
S. D.
,
1993
, “
Bubble Chord Length Distribution in Three-Phase Fluidized Beds
,”
Chem. Eng. Sci.
,
48
, pp.
1033
1039
.
9.
Park
,
W. H.
,
Kang
,
W. K.
,
Capes
,
C. E.
, and
Osberg
,
G. L.
,
1969
, “
The Properties of Bubbles in Fluidized Beds of Conducting Particles as Measured by an Electroresistivity Probe
,”
Chem. Eng. Sci.
,
24
, pp.
851
865
.
10.
Burgess
,
J. M.
,
Fane
,
A. G.
, and
Fell
,
C. J. D.
,
1981
, “
Application of an Electroresistivity Probe Technique to a Two-Dimensional Fluidized Bed
,”
Trans. Inst. Chem. Eng.
,
59
, pp.
249
252
.
11.
Matsuura
,
A.
, and
Fan
,
L.-S.
,
1984
, “
Distribution of Bubble Properties in a Gas-Liquid-Solid Fluidized Bed
,”
AIChE. J.
,
30
, pp.
894
903
.
12.
Choi
,
J. M.
,
Soh
,
J. E.
, and
Kim
,
S. D.
,
1988
, “
Bubble Size and Frequency in Gas Fluidized Beds
,”
J. Chem. Eng. Jpn.
,
21
,
171
178
.
13.
Hewitt, G. F., 1978, Measurement of Two-Phase Flow Parameters, Academic, London.
14.
Zhang, J.-P., 1996, “Bubble Columns and Three-Phase Fluidized Beds: Flow Regimes and Bubble Characteristics,” Ph.D. thesis, University of British Columbia, Vancouver, British Columbia.
15.
Werther
,
J.
,
1974
, “
Bubbles in Gas Fluidized Bed–Part I
,”
Trans. Inst. Chem. Eng.
,
52
, pp.
149
159
.
16.
Gunn
,
D. J.
, and
Al-Doori
,
H. M.
,
1985
, “
The Measurement of Bubble Flows in Fluidized Beds by Electrical Probe
,”
Int. J. Multiphase Flow
,
11
, pp.
535
551
.
17.
Lim
,
K. S.
, and
Agarwal
,
P. K.
,
1992
, “
Bubble Velocity in Fluidized Beds: the Effect of Non-Vertical Bubble Rise on its Measurement using Submersible Probes and its Relationship with Bubble Size
,”
Powder Technol.
,
69
, pp.
239
248
.
18.
Griffith
,
P.
, and
Wallis
,
G. B.
,
1961
, “
Two-Phase Slug Flow
,”
ASME J. Heat Transfer
,
83
, pp.
307
320
.
19.
Wallis, G. B., 1969, One-Dimensional Two-Phase Flow, McGraw-Hill, New York.
20.
Hewitt, G. F., and Hall-Taylor, N. S., 1970, Annular Two-Phase Flow, Pergamon, New York.
21.
Govier, G. W., and Aziz, K., 1972, The Flow of Complex Mixtures in Pipes, Van Nostrand Reinhold Co.
22.
Taitel
,
Y.
,
Barnea
,
D.
, and
Dukler
,
A. E.
,
1980
, “
Modeling Flow Pattern Transitions for Steady Upward Gas-Liquid Flow in Vertical Tubes
,”
AIChE. J.
,
26
, pp.
345
354
.
23.
Vince
,
M. A.
, and
Lahey
, Jr.,
R. T.
,
1982
, “
On the Development of an Objective Flow Regime Indicator
,”
Int. J. Multiphase Flow
,
8
, pp.
93
124
.
24.
Fernandes
,
R. C.
,
Semiat
,
R.
, and
Dukler
,
A. E.
,
1983
, “
Hydrodynamic Model for Gas-Liquid Slug Flow in Vertical Tubes
,”
AIChE. J.
,
29
, pp.
981
989
.
25.
Mao
,
Z.-S.
, and
Dukler
,
A. E.
,
1989
, “
An Experimental Study of Gas-Liquid Slug Flow Experiments in Fluids
,”
Exp. Fluids
,
8
, pp.
169
182
.
26.
Franca
,
F.
,
Ackigoz
,
M.
,
Lahey
, Jr.,
R. T.
, and
Clausse
,
A.
,
1991
, “
The Use of Fractal Techniques for Flow Regime Identification
,”
Int. J. Multiphase Flow
,
17
, pp.
545
552
.
27.
Hasan
,
A. R.
, and
Kabir
,
C. S.
,
1992
, “
Two-Phase Flow in Vertical and Inclined Annuli
,”
Int. J. Multiphase Flow
,
18
, pp.
279
293
.
28.
Zhang
,
J.-P.
,
Grace
,
J. R.
, and
Epstein
,
N.
,
1997
, “
Flow Regime Identificationin Bubble Columns and Three-Phase Fluidized Beds
,”
Chem. Eng. Sci.
,
52
, pp.
3979
3992
.
29.
Sanaullah, K., Zaidi, S. H., Altunbas, A., and Hills, J. H., 1998, “Bubbly Flow Measurements Using Resistivity Probes in Novel Configuration,” Proceedings 3rd International Conference On Multiphase Flow, Lyon, France, Paper No. 505, pp. 1–7.
30.
Annunziato, M., and Girardi, G., 1985, “Statistical Methods to Identify Two-Phase Regimes: Experimental Results for Vertical Large Diameter Tubes,” Proceedings of the 2nd International Conference on Two-Phase Flow, London, U.K., British Hydromechanics Research Association (BHRA), Fluid Engineering Centre, Cranfield, Bedford, England, pp. 361–380.
31.
Govier
,
G. W.
,
Radford
,
B. A.
, and
Dunn
,
J. S. C.
,
1957
, “
The Upwards Vertical Flow of Air-Water Mixtures I. Effect of Air and Water Rates on Flow Pattern, Holdup and Pressure Drop
,”
Can. J. Chem. Eng.
,
35
, pp.
58
70
.
You do not currently have access to this content.