Issue Section:
Research Papers
1.
Blevins, R. D., 1977, Flow Induced Vibration, Van Nostrand Reinhold, pp. 10–30.
2.
Chen Zuoyi, Jiang Zikang, and Sun Xijiu, 1988, Oscillating Fluid Mechanic, China Hydroelectric Press, Beijing, pp. 22–44.
3.
Chen
Zuoyi
Shu
Hong
1990
, “The Parametric Polynomial Method for Determining Complex Flow
,” Journal of Engineering Thermophysics
, Vol. 11
, No. 1
, pp. 44
–46
.4.
Gerolymos
G. A.
Vallet
I.
1996
, “Validation of Three-Dimensional Euler Method for Vibrating Cascade Aerodynamics
,” ASME Journal of Turbomachinery
, Vol. 118
, No. 10
, pp. 771
–782
.5.
He
L.
Deton
J. D.
1994
, “Three-Dimensional Time-Marching Inviscid and Viscous Solution for Unsteady Flow Around Vibrating Blades
,” ASME Journal of Turbomachinery
, Vol. 116
, pp. 469
–478
.6.
Kandil, O. A., and Chuang, H. A., 1989, “Unsteady Navier-Stokes computation Past Oscillating Delta Wing at High Incidence,” AIAA-89-0081, pp. 1–10.
7.
Kirtley, K. R., and Lakshminarayana, B., 1985, “Computation of Internal Incompressible Separated Flows Using a Spacing-Marching Technique,” 18th Fluid Dynamics and Plasma-dynamics and Lasers Conference. Cincinnati, AIAA-85-1624. pp. 1–12.
8.
Kandil, Osama, A., Chuang, H. Andrew, and Salman, Ahmed, A., 1990, “Unsteady Flow Computation of Oscillating Flexible Wings,” 31st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, New York, Part 3 (of 4): Structural Dynamics, AIAA-90-0937, pp. 1370–1381.
9.
Ramamurti
R.
Ghia
U.
Ghia
K. N.
1991
, “A Semi-Elliptic Analysis for 2-D Viscous Flows Through Cascade Configurations
,” Computers and Fluids
, Vol. 20
, No. 3
, pp. 223
–242
.10.
Rubin
S. G.
Reddy
D. R.
1983
, “Analysis of Global Pressure Relaxation for Flow With Strong Intreaction and Separation
,” Computers and Fluids
, Vol. 11
, No. 4
, pp. 281
–306
.11.
Wolff
J.
Fleeter
S.
1992
, “Viscous Oscillating Cascade Aerodynamics and Flutter by a Locally Analytical Method
,” Computational Mechanics
, Vol. 10
, No. 3–4
, pp. 203
–215
.12.
Scharror, J. K., 1987, “Theory Versus Experiment for the Rotot Dynamic coefficients of Labyrinth Gas Seals Part 1—A Two Control volume Model,” Proceedings of 11 Biennial Conference on Mechanical Vibration and Noise, Boston, MA, pp. 27–30.
This content is only available via PDF.
Copyright © 1999
by The American Society of Mechanical Engineers
You do not currently have access to this content.