This work reports direct numerical simulations of transitional flows in communicating channels. Above a critical Reynolds number, the flow becomes fluctuating and self-sustained with vortical motions temporally synchronized with channel traveling waves. The energy transfer mechanism between the mean and the fluctuating flow is investigated along with the distributions of oscillatory shear stress and transitional viscosity. The kinetic energy equation for the fluctuating velocity is solved from DNS data to evaluate the contributions of the production term, viscous dissipation, work of dynamic pressure and work of viscous shear stresses.

1.
Amon
C. H.
,
Guzma´n
A. M.
, and
Morel
B.
,
1996
, “
Lagrangian Chaos, Eulerian Chaos and Mixing Enhancement in Converging-Diverging Channel Flows
,”
Physics of Fluids
, Vol.
8
, No.
5
, pp.
1192
1206
.
2.
Amon
C. H.
,
1993
, “
Spectral Element-Fourier Method for Transitional Flows in Complex Geometries
,”
AIAA Journal
, Vol.
31
, No.
1
, pp.
42
48
.
3.
Amon, C. H., Majumdar, D., Herman, C. V., and Mikic, B. B., 1993, “Numerical and Experimental Visualization of Fast-Evolving Heat Transfer Phenomena in Self-Sustained Oscillatory Flows,” Experimental and Numerical Flow Visualization, ASME-Fluids Engineering Division, Vol. 172, pp. 351–358.
4.
Amon
C. H.
,
Herman
C. V.
,
Majumdar
D.
,
Mayinger
F.
,
Mikic
B. B.
, and
Sekulic
D.
,
1992
, “
Numerical and Experimental Studies of Oscillatory Flows in Communicating Channels
,”
International Journal of Heat and Mass Transfer
, Vol.
35
, pp.
3115
3129
.
5.
Amon
C. H.
, and
Patera
A. T.
,
1989
, “
Numerical Calculation of Stable Three-Dimensional Tertiary States in Grooved-channel Flows
,”
Physics of Fluids A
, Vol.
1
, No.
12
, pp.
2005
2009
.
6.
Ghaddar
N. K.
,
Korczak
K. Z.
,
Mikic
B. B.
, and
Patera
A. T.
,
1986
, “
Numerical Investigation of Incompressible Flow in Grooved Channels. Part 2. Resonance and Oscillatory Heat-Transfer Enhancement
,”
Journal of Fluid Mechanics
, Vol.
168
, pp.
541
567
.
7.
Goel
P.
, and
Amano
R. S.
,
1986
, “
Turbulence Energy and Diffusion Transport in a Separating and Reattaching Flow
,”
AIAA Journal
, Vol.
86
, p.
1724
1724
.
8.
Greiner
M.
,
Chen
R. F.
, and
Wirtz
R. A.
,
1991
, “
Enhanced Heat Transfer/Pressure Drop Measured from a Flat Surface in a Grooved Channel
,”
ASME Journal of Heat Transfer
, Vol.
113
, pp.
498
501
.
9.
Guzma´n
A. M.
, and
Amon
C. H.
,
1994
, “
Transition to Chaos in Converging-Diverging Channel Flows: Ruelle-Takens-Newhouse Scenario
,”
Physics of Fluids
, Vol.
6
, pp.
1994
2002
.
10.
Guzma´n
A. M.
, and
Amon
C. H.
,
1996
, “
Dynamical Flow Characterization of Transitional and Chaotic Regimes in Converging-Diverging Channels
,”
Journal of Fluid Mechanics
, Vol.
321
, pp.
25
57
.
11.
Hinze, J. O., 1975, Turbulence, 2nd ed., McGraw-Hill, New York.
12.
Humphrey, J. A. C., and Whitelaw, J. H., 1980, “Turbulent Flow in a Duct with Roughness,” Turbulent Shear Flows II, J. S. Bradbury et al., eds., Springer-Verlag, Berlin, pp. 174–188.
13.
Kasagi
N.
,
Tomita
Y.
, and
Kuroda
A.
,
1992
, “
Direct Numerical Simulation of Passive Scalar Field in a Turbulent Channel Flow
,”
ASME Journal of Heat Transfer
, Vol.
114
, pp.
598
606
.
14.
Kim, J., and Moin, P., 1989, “Transport of Passive Scalars in a Turbulent Channel Flow,” Turbulent Shear Flows VI, J.-C, Andre et al., eds., Springer-Verlag, Berlin, pp. 85–96.
15.
Kurosaki
Y.
,
Kashiwagi
T.
,
Kobayashi
H.
, and
Uzuhashi
H.
,
1988
, “
Experimental Study on Heat Transfer from Parallel Louvered Fins by Laser Holographic Interferometry
,”
Experimental Thermal Fluid Science
, Vol.
1
, pp.
59
67
.
16.
Lyons
S. L.
, and
Hanratty
T. J.
,
1991
, “
Direct Numerical Simulation of Passive Heat Transfer in a Turbulent Channel Flow
,”
International Journal of Heat and Mass Transfer
, Vol.
34
, pp.
1149
1161
.
17.
Majumdar
D.
, and
Amon
C. H.
,
1992
, “
Heat and Momentum Transfer in Oscillatory Viscous Flows
,”
ASME Journal of Heat Transfer
, Vol.
114
, pp.
866
875
.
18.
Majumdar, D., 1993, “Fluid Flow and Heat Transfer Mechanisms of Self-Sustained Oscillations in Communicating Channels,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.
19.
Manglik, R. M., and Bergles, A. E., 1989, “The Thermal-hydraulic Design of Rectangular Offset-strip-fin Compact Heat Exchanger,” A. L., London Symposium on Compact Heat Exchangers, Stanford.
20.
Nigen
J. S.
, and
Amon
C. H.
,
1994
, “
Time-Dependent Conjugate Heat Transfer Characteristics of Self-Sustained Oscillatory Flows in a Grooved Channel
,”
ASME JOURNAL OF FLUIDS ENGINEERING
, Vol.
116
, pp.
499
507
.
21.
Orszag
S. A.
, and
Kells
L. C.
,
1980
, “
Transition to Turbulence in Plane Poiseuille and Plane Couette Flows
,”
Journal of Fluid Mechanics
, Vol.
96
, pp.
159
205
.
22.
Patera
A. T.
,
1984
, “
A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion
,”
Journal of Computational Physics
, Vol.
54
, pp.
468
477
.
23.
Schatz
M. F.
, and
Swinney
H. L.
,
1992
, “
Secondary Instability in Plane Channel Flow with Spatially Periodic Perturbations
,”
Physics Review Letter
, Vol.
69
, p.
434
434
.
24.
Suzuki
K.
,
Xi
G. N.
,
Inaoka
K.
, and
Hagiwara
Y.
,
1994
, “
Mechanism of Heat Transfer Enhancement Due to Self-sustained Oscillation for an In-line Fin Array
,”
International Journal of Heat and Mass Transfer
, Vol.
37
, pp.
83
96
.
25.
Wang, G., and Vanka, S. P., 1995, “Self-Sustained Unsteady Flow in Periodic Wavy Passages,” Unsteady Flows, ASME-Fluids Engineering Division, Vol. 216, pp. 37–42.
26.
Webb, R. L., 1990, “The Flow Structure in the Louvered Fin Heat Exchanger Geometry,” SAE #900722, International Congress & Exposition, Detroit, MI.
This content is only available via PDF.
You do not currently have access to this content.