To improve the prediction of turbulence inside internal combustion engines, a Reynolds stress turbulence model is implemented in the Kiva-II code. After a rapid description of the Launder-Reece-Rodi model (noted LRR), two validation test cases (the plane channel flow and the flow over a backward facing step) are presented. The advantages of a second order closure and the shortcomings of the LRR model are then analyzed. Finally, a simulation of an intake and compression stroke using both the standard k – ε model and the LRR model is described. As a precise knowledge of the velocity and turbulent fields near TDC is necessary for the prediction of the mixing and the combustion processes, we have analyzed the influence of the turbulence model on the flow field. Results are compared with experimental data and show a strong influence of the turbulence model even on the mean flow, especially at the end of the compression stroke (TDC).

1.
Amsden, A. A., O’Rourke, P. J., and Butler, T. D., 1989, “KIVA-II: A Computer Program for Chemically Reactive Flows with Spray,” LA-11560-MS, Los Alamos National Laboratory, Los Alamos, NM.
2.
Brun, G., 1988, “Developpement et application d’une methode d’elements finis pour le calcul des ecoulements turbulents fortement chauffes,” The`se de doctorat, Ecole Centrale de Lyon.
3.
Cambon, C., Mao, Y., and Jeandel, D., 1992a, “On the Application of Time Dependent Scaling to Modelling of Turbulence Undergoing Compression,” Eur. J. Mech. B/Fluids, No. 6, pp. 683–703.
4.
Cambon
C.
,
Jacquin
L.
, and
Lubrano
J. L.
,
1992
b, “
Toward a New Reynolds Stress Model for Rotating Turbulent Flows
,”
Physics of Fluids
, Vol.
4
, pp.
812
824
.
5.
Comte-Bellot, G., 1965, “Ecoulement turbulent entre deux parois paralle`les,” Publications Scientifiques et Techniques du Ministe´re de l’Air, No. 419.
6.
Deschamps, C. J., and Watkins, A. P., 1994, “Modeling of Turbulent Flow through Port/Valve Assemblies with an Algebraic Reynolds Stress Model,” COMODIA 94, pp. 547–552.
7.
Debaty, P., 1994, “Performances d’un modele du second ordre dans un code elements finis,” The`se de doctorat, Ecole Centrale de Lyon.
8.
El Tahry, S. H., 1985a, “A Comparison of Three Turbulence Models in Engine-Like Geometries,” COMODIA, Tokyo.
9.
El Tahry
S. H.
,
1985
b, “
Application of a Reynolds Stress Model to Engine-Like Flow Calculations
,”
ASME JOURNAL OF FLUIDS ENGINEERING
, Vol.
107
, pp.
444
450
.
10.
Farhanieh
B.
,
Davidson
L.
, and
Sunde´n
B.
, “
Employment of Second-Moment Closure for Calculation of Turbulent Recirculating Flows in Complex Geometries with Collocated Variable Arrangement
,”
International Journal for Numerical Methods in Fluids
, Vol.
16
, pp.
525
544
.
11.
Fu
S.
,
Huang
P. G.
,
Launder
B. E.
, and
Leschziner
M. A.
,
1988
, “
A comparison of algebraic and differential second-moment closures for axisymmetric turbulent shear flows with and without swirl
,”
ASME JOURNAL OF FLUIDS ENGINEERING
, Vol.
110
, pp.
216
221
.
12.
Gosman, A. D., and Watkins, A. P., 1977, “A Computer Prediction Method for Turbulent Flow and Heat Transfer in Piston/Cylinder Assemblies,” 1st Symposium on Turbulent Shear Flow, Penn. State Univ., Apr. 18–20 1977.
13.
Gosman, A. D., Tsui, Y. Y., and Watkins, A. P., 1984, “Calculations of Three Dimensional Air Motion in Model Engine,” SAE paper 840229.
14.
Huang, P. G., and Leschziner, M. A., 1985, “Stabilization of Recirculating Flow Computations Performed with Second-Order Closures and Third-Order Discretization,” Proc. 5th Symp. on Turbulent Shear Flows, Cornell University, Paper 20.7.
15.
Jakirlic, S., and Hanjalic, K., 1994, “On the Performance of the Second-Moment High- and Low-Re-Number Closures in Reattaching Flows,” Proc. Int. Symp. on Turbulence, Heat and Mass Transfer, Lisbon, Aug. 1994.
16.
Jones
W. P.
,
Pascau
A.
,
1989
, “
Calculation of Confined Swirling Flows With a Second Moment Closure
,”
ASME JOURNAL OF FLUIDS ENGINEERING
, Vol.
111
, pp.
248
255
.
17.
Kim
J.
,
Kline
S. J.
, and
Johnston
J. P.
,
1980
, “
Investigation of a Reattaching Turbulent Shear Layer: Flow Over a Backward-Facing Step
,”
ASME JOURNAL OF FLUIDS ENGINEERING
, Vol.
102
, pp.
302
308
.
18.
Kline, S. J., Cantwell, B. J., and Lilley, G. M., 1981, Proceedings of the 1980–81 AFOSR-HTTM Stanford Conference on Complex Turbulent Flows, Stanford University Press, Stanford, CA.
19.
Launder
B. E.
,
Reece
G. J.
, and
Rodi
W.
,
1975
, “
Progress in the Development of a Reynolds Stress Turbulence Closure
,”
Journal of Fluid Mechanics
, Vol.
68
, pp.
537
566
.
20.
Launder
B. E.
,
1989
, “
Second Moment Closure and its Use in Modelling Turbulent Industrial Flows
,”
International Journal for Numerical Methods In Fluids
, Vol.
9
, pp.
963
985
.
21.
Lebre`re, L., 1995, “Mode´lisation de la turbulence au second ordre pour la simulation nume´rique d’e´coulements dans les moteurs a` pistons,” The`se de Doctorat, Ecole Centrale de Lyon.
22.
Le Penven, L., and Serre, G., 1993, “Homogeneous Turbulence Submitted to Compression, Experimental Study and Modelling,” 9th Symposium on Turbulent Shear Flow, Kyoto (Japan), August 16–18, 1993.
23.
Lien, F. S., and Leschziner, M. A., 1993, “Second-Moment Modelling of Recirculating Flow with a Non-Orthogonal Collocated Finite-Volume Algorithm,” Turbulent Shear Flows 8, Springer-Verlag, Berlin, pp. 431.
24.
Lien
F. S.
, and
Leschziner
M. A.
,
1994
, “
Assessment of Turbulence-Transport Models Including Non-Linear RNG Eddy-Viscosity Formulation and Second-Moment Closure for Flow Over a Backward Facing Step
,”
Computers Fluids
, Vol.
23
, pp.
983
1004
.
25.
Mao
Y.
,
Buffat
M.
, and
Jeandel
D.
,
1994
, “
Simulation of the Turbulent Flow Inside The Combustion Chamber of a Reciprocating Engine With a Finite Element Method
,”
ASME JOURNAL OF FLUIDS ENGINEERING
, Vol.
116
, pp.
363
369
.
26.
Michard, M., Grosjean, N., Safsaf, D., and Lengyel, I., 1993: “Mesure d’e´chelles de turbulence dans un moteur alternatif,” Rapport Final 1992, ME-TRAFLU.
27.
Naitoh, K., Fujii, H., Takagi, Y., and Kuwahara, K., 1990, “Numerical Simulation of the Detailed Flow in Engines Ports and Cylinders,” SAE paper No. 900256.
28.
Oberlack
M.
, and
Peters
N.
,
1992
, “
Closure of the Two-Point Correlation Equation as a Basis of Reynolds Stress Models
,”
Applied Scientific Research
, Vol.
51
, pp.
533
538
.
29.
Reynolds, W. C., 1980, “Modelling of Fluid Motions in Engines—An Introductory Overview,” Symposium on Combustion Modeling in Reciprocating Engines, eds., Plenum Press, 1980, pp. 41–66.
30.
Rodi
W.
,
1976
, “
A New Algebraic Stress Relation for Calculating the Reynolds Stresses
,”
Z. Ang. Math. und. Mech.
, Vol.
56
, p.
219
219
.
31.
Speziale
C. G.
,
Sarkar
S.
, and
Gatski
T. B.
,
1991
, “
Modelling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach
,”
Journal of Fluid Mechanics
, Vol.
227
, pp.
245
272
.
32.
Thangam, S., 1991, “Analysis of Two-Equation Turbulence Models for Recirculating Flows,” ICASE Report No. 91–61.
33.
Watkins, A. P., Kanellakopoulos, P., and Lea, C. J., 1990, “An Assessment of Discretisation Schemes and Turbulence Models for In-Cylinder Flows,” COMODIA 90, pp. 499–504.
34.
Watkins, A. P., and Lea, C. J., 1991, “Development of Advanced Turbulence Models for the Calculation of Flows in Internal Combustion Engine Cylinders,” IMechE 1991, pp. 7–20.
35.
Wu, C. T., Ferziger, J. H., and Chapman, D. R., 1985, report TF-21 NASA, Stanford.
This content is only available via PDF.
You do not currently have access to this content.