Chemical flow and transport have been studied at the pore-scale in an experimental porous medium. Measurements have been taken using a novel nonintrusive fluorescence imaging technique. The experimental setup consists of a cylindrical column carved out of a clear plastic block, packed with clear beads of the same material. A refractive index-matched fluid was pumped under laminar, slow-flow conditions through the column. The fluid was seeded with tracer particles or a solute organic dye for flow and chemical transport measurements, respectively. The system is automated to image through the porous medium for collecting microscopic values of velocity, concentration, and pore geometry at high-accuracy and high-resolution. Various geometric, flow, and transport quantities have been obtained in a full three-dimensional volume within the porous medium. These include microscopic (pore-scale) medium geometry, velocity and concentration fields, dispersive solute fluxes, and reasonable estimates of a representative elementary volume (REV) for the porous medium. The results indicate that the range of allowable REV sizes, as measured from averaged velocity, concentration, and pore volume data, varies among the different quantities, however, a common overlapping range, valid for all quantities, can be determined. For our system, this common REV has been estimated to be about two orders of magnitude larger than the medium’s particle volume. Furthermore, correlation results show an increase in correlation of mean-removed velocity and concentration values near the concentration front in our experiments. These results have been confirmed via 3-D plots of concentration, velocity, pore geometry, and microscopic flux distributions in these regions.

1.
Baveye
P.
, and
Sposito
G.
,
1984
, “
The Operational Significance of the Continuum Hypothesis in the Theory of Water Movement Through Soils and Aquifiers
,”
Water Resources Research
, Vol.
20
, pp.
521
530
.
2.
Bear, J., 1972, Dynamics of Fluids in Porous Media, Elsevier, New York, NY.
3.
Bories, S. A., Charrier-Mojtabi, M. C., Houi, D., and Raynaud, P. G., 1991, “Non Invasive Measurement Techniques in Porous Media,” Convective Heat and Mass Transfer in Porous Media, S. Kakac et al., (eds.), Kluwer Academic Publishers, Netherlands.
4.
Darcy, H. P. G., 1856, Les fontanes publiques de la villa de Dijon, Victor Dalmont, Paris.
5.
Derbyshire
J. A.
,
Gibbs
S. J.
,
Carpenter
T. A.
, and
Hall
L. D.
,
1994
, “
Rapid Three-Dimensional Velocimetry by Nuclear Magnetic Resonance Imaging
,”
AIChE Journal
, Vol.
40
, pp.
1404
1407
.
6.
Dybbs, A., and Edwards, R. V., 1984, “A New Look at Porous Media Fluid Mechanics—Darcy to Turbulent,” Fundamentals of Transport Phenomena in Porous Media, Martinus Nijhoff Publishers, Boston, pp. 201–256.
7.
Fick
A.
,
1855
,
U¨ber Diffusion
,
Annalen der Physik und Chemie
, Vol.
94
, pp.
59
86
.
8.
Givler
R. C.
, and
Altobelli
S. A.
,
1994
, “
A Determination of the Effective Viscosity for the Brinkman-Forchheimer Flow Model
,”
Journal of Fluid Mechanics
, Vol.
258
, pp.
355
370
.
9.
Graham
T.
,
1833
, “
On the Law of Diffusion of Gases
,”
Philosophical Magazine
, Vol.
2
, (Series 3), pp.
175
351
.
10.
Gray
W. G.
,
1975
, “
A Derivation of the Equations for Multi-Phase Transport
,”
Chemical Engineering Science
, Vol.
30
, pp.
229
233
.
11.
Gray, W. G., Leijnse, A., Kolar, R. L., and Blain, C. A., 1993, Mathematical Tools of Changing Spatial Scales in the Analysis of Physical Systems, CRC Press, Boca Raton, FL.
12.
Han
N. W.
,
Bhakta
J.
, and
Carbonell
R. G.
,
1985
, “
Longitudinal and Lateral Dispersion in Packed Beds: Effect of Column Length and Particle Size Distribution
,”
AIChE Journal
, Vol.
31
, pp.
277
288
.
13.
Harleman
D. R. E.
, and
Rumer
R. R.
,
1963
, “
Longitudinal and Lateral Dispersion in an Isotopic Porous Medium
,”
Journal of Fluid Mechanics
, Vol.
16
, pp.
385
394
.
14.
Hassanizadeh
S. M.
, and
Gray
W. G.
,
1979
, “
General Conservation Equations for Multi-Phase Systems: Averaging Procedures
,”
Advances in Water Resources
, Vol.
2
, pp.
131
144
.
15.
Hassinger
R. C.
, and
Von Rosenberg
D. U.
,
1968
, “
A Mathematical and Experimental Examination of Transverse Dispersion Coefficients
,”
Society of Petroleum Engineering Journal
, Vol.
243
, pp.
195
204
.
16.
Jolls
K. R.
, and
Hanratty
T. J.
,
1966
, “
Transition to Turbulence for Flow Through a Dumped Bed of Spheres
,”
Chemical Engineering Science
, Vol.
21
, pp.
1185
1190
.
17.
Jolls
K. R.
, and
Hanratty
T. J.
,
1969
, “
Use of Electrochemical Techniques to Study Mass Transfer Rates and Local Skin Friction to a Sphere in a Dumped Bed
,”
AIChE Journal
, Vol.
15
, pp.
199
205
.
18.
Klotz
D.
,
Seiler
K. P.
,
Moser
H.
, and
Neumaier
F.
,
1980
, “
Dispersivity and Velocity Relationship from Laboratory and Field Experiments
,”
Journal of Hydrology
, Vol.
45
, pp.
169
184
.
19.
Li
T.
,
Seymour
J. D.
,
Powell
R. L.
,
McCarthy
M. J.
,
MacCarthy
K. L.
, and
O¨dberg
L.
,
1994
, “
Visualization of Flow Patterns of Cellulose Fiber Suspensions by NMR Imaging
,”
AIChE Journal
, Vol.
40
, pp.
1408
1411
.
20.
Maxwell
J. C.
,
1860
, “
On the Process of Diffusion of Two or More Kinds of Moving Particles Among One Another
,”
Philosophical Magazine
, Vol.
20
(Series 4), pp.
21
38
.
21.
Montemagno
C. D.
, and
Gray
W. G.
,
1995
, “
Photoluminescent Volumetric Imaging: A Technique for the Exploration of Multiphase Flow and Transport in Porous Media
,”
Geophysical Research
, Vol.
22
(
4
), pp.
425
428
.
22.
Murphy, D., 1967, “Experimental Study of Low Speed Momentum Transfer in Packed Beds,” Ph.D. thesis, Case Western Reserve University.
23.
Musser, W. N., 1971, “Low Dispersion Columns for Large Scale Chromatographic Separations,” Ph.D. thesis, Case Western Reserve University.
24.
Northrup
M. A.
,
Kulp
T. J.
,
Angel
S. M.
, and
Pinder
G. F.
,
1993
, “
Direct Measurement of Interstitial Velocity Field Variations in a Porous Medium Using Fluorescent Particle Image Velocimetry
,”
Chemical Engineering Science
, Vol.
48
, pp.
13
21
.
25.
Peurrung
L.
,
Rashidi
M.
, and
Kulp
T. J.
,
1995
, “
Measurement of Porous Medium Velocity Fields and Their Volumetric Averaging Characteristics Using Particle Tracking Velocimetry
,”
Chemical Engineering Science
, Vol.
50
(
14
), pp.
2243
2253
.
26.
Rashidi
M.
, and
Banerjee
S.
,
1988
, “
Turbulence Structure in Free Surface Channel Flows
,”
Physics of Fluids
, Vol.
31
, pp.
2491
2503
.
27.
Rashidi
M.
,
Peurrung
L.
,
Tompson
A. F. B.
, and
Kulp
T. J.
,
1996
, “
Experimental Analysis of Pore-Scale Flow and Transport in Porous Media
,”
Advances in Water Resources
, Vol.
19
(
3
), pp.
163
180
.
28.
Rashidi, M., and E. Dickenson, 1996. “Small Scale Flow Processes in Aqueous Heterogeneous Porous Media” ASME Fluids Engineering Conference, San Diego, CA, July 7–11.
29.
Rashidi, M., 1996, Non-Invasive Techniques in Multiphase Flows, J. Chaouki, F, Larachi, and M. P. Dudukovic, eds., Elsevier, New York, NY, in press.
30.
Rhoades, R. G., 1963, “Flow of Air in Beds of Spheres: A Statistical and Theoretical Approach,” Ph.D. thesis, Rensselaer Polytechnic Institute.
31.
Saleh
S.
,
Thovert
J. F.
, and
Adler
P. M.
,
1993
, “
Flow Along Porous Media by Particle Image Velocimetry
,”
AIChE Journal
, Vol.
39
, pp.
1765
1776
.
32.
Schwartz
C. E.
, and
Smith
J. M.
,
1953
, “
Flow Distribution in Packed Beds
,”
Industrial and Engineering Chemistry
, Vol.
45
, pp.
1209
1218
.
33.
Shattuck
M. D.
,
Behringer
R.
,
Geordiadis
J.
, and
Johnson
G. A.
,
1991
, “
Magnetic Resonance Imaging of Interstitial Velocity Distributions in Porous Media
,”
Proceedings of ASME/FED on Experimental Techniques in Multiphase Flows
, Vol.
125
, pp.
39
45
.
34.
Shattuck
M. D.
,
Behringer
R.
,
Johnson
G. A.
, and
Geordiadis
J.
,
1995
, “
Onset and Stability of Convention in Porous Media: Visualization by Magnetic Resonance Imaging
,”
Physical Review Letters
, Vol.
75
(
10
), pp.
1934
1937
.
35.
Slattery
J. C.
,
1967
, “
Flow of Viscoelastic Fluids Through Porous Media
,”
AIChE Journal
, Vol.
13
, pp.
1066
1071
.
36.
Slattery, J. C., 1972, Momentum, Energy, and Mass Transfer in Continua, McGraw-Hill, New York, NY.
37.
Soll
W. E.
,
Celia
M. A.
, and
Wilson
J. L.
,
1993
, “
Micromodel Studies of Three-Fluid Porous Media Systems: Pore-Scale Processes Relating to Capillary Pressure-Saturation Relationships
,”
Water Resources Research
, Vol.
29
, pp.
2963
2974
.
38.
Soll
W. E.
, and
Celia
M. A.
,
1993
, “
A Modified Percolation Approach to Simulating 3-Fluid Capillary Pressure Saturation Relationships
,”
Advances in Water Resources
, Vol.
16
(
2
), pp.
107
126
.
39.
Stefan
J.
,
1871
, “
U¨ber das Gleichgewicht und Bewegung, insbesondere die Diffusion von Gasgemengen
,”
Akademic der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche, Klasse, Abt. II
, Vol.
63
, pp.
63
124
.
40.
Stephenson
J. L.
, and
Stewart
W. E.
,
1986
, “
Optical Measurements of Porosity and Fluid Motion in Packed Beds
,”
Chemical Engineering Science
, Vol.
41
, pp.
2161
2170
.
41.
Wan
J.
, and
Wilson
J. L.
,
1994
, “
Visualization of the Role of the Gas-Water Interface on the Fate and Transport of Collids in Porous Media
,”
Water Resources Research
, Vol.
30
, pp.
11
23
.
42.
Wegner
T. H.
,
Karabelas
A. J.
, and
Hanratty
T. J.
,
1971
, “
Visual Studies of Flow in a Regular Array of Spheres
,”
Chemical Engineering Science
, Vol.
26
, pp.
59
63
.
43.
Whitaker
S.
,
1967
, “
Diffusion and Dispersion in Porous Media
,”
AIChE Journal
, Vol.
13
, pp.
420
429
.
44.
Whitaker
S.
,
1969
, “
Advances in Theory of Fluid Motion in Porous Media
,”
Industrial and Engineering Chemistry
, Vol.
61
, pp.
14
28
.
This content is only available via PDF.
You do not currently have access to this content.