Various measurement tools that are used in chaos theory were applied to analyze two-phase pressure signals with the objective of identifying and interpreting flow pattern transitions for two-phase flows in a small, horizontal rectangular channel. These measurement tools included power spectral density function, autocorrelation junction, pseudo-phase-plane trajectory, Lyapunov exponents, and fractal dimensions. It was demonstrated that the randomlike pressure fluctuations characteristic of two-phase flow in small rectangular channels are chaotic, and governed by a high-order deterministic system. The correlation dimension is potentially a new approach for identifying certain two-phase flow patterns and transitions.

1.
Brauner
N.
, and
Maron
D. M.
,
1992
, “
Identification of the Range of ‘Small Diameters’ Conduits, Regarding Two-Phase Flow Pattern Transitions
,”
International Communications in Heat and Mass Transfer
, Vol.
19
, pp.
29
39
.
2.
Clarke, R. H., and Blundell, N., 1989, “The Two-Phase Flow Patterns Occurring Inside a Plane-Fin Passage of a Plate-Fin Heat Exchanger,” Proceedings of AIChE Symposium Series, Heat Transfer - Philadelphia, Vol. 85, pp. 287–292.
3.
Ding
J.
, and
Tam
S. W.
,
1994
, “
Asymptotic Power Spectrum Analysis of Chaotic Behavior in Fluidized Beds
,”
International Journal of Bifurcation and Chaos
, Vol.
4
, No.
2
, pp.
327
341
.
4.
Dorning, J., 1989a, “Nonlinear Dynamics and Chaos in Heat Transfer and Fluid Flow,” Proceedings of AIChE Symposium Series, Heat Transfer - Philadelphia, Vol. 85, pp. 13–29.
5.
Dorning, J., 1989b, “An Introduction to Chaotic Dynamics in Two-Phase Flow,” Proceedings of AIChE Symposium Series, Heat Transfer - Philadelphia, Vol. 85, pp. 241–248.
6.
Franca
F.
,
Acikgoz
M.
,
Lahey
R. T.
, and
Clausse
A.
,
1991
, “
The Use of Techniques for Flow Regime Identification
,”
International Journal of Multiphase Flow
, Vol.
17
, pp.
545
552
.
7.
Frazer
A. M.
, and
Swinney
H. L.
,
1986
, “
Independent Coordinates for Strange Attractors from Mutual Information
,”
Physics Review A
, Vol.
33
, p.
1135
1135
.
8.
Galbiati
L.
, and
Andreini
P.
,
1992
, “
Flow Pattern Transition for Vertical Downward Two-Phase Flow in Capillary Tubes. Inlet Mixing Effects
,”
International Communications in Heat and Mass Transfer
, Vol.
19
, pp.
791
799
.
9.
Gorman, M., and Robbins, K. A., 1992, “Real-Time Identification of Flame Dynamics,” Applied Chaos, Kim, J. H., and Stringer, J., eds., Wiley, New York, pp. 261–276.
10.
Grassberger
P.
, and
Procaccia
I.
,
1983
, “
Measuring the Strangeness of Strange Attractors
,”
Physica
, Vol.
9D
, pp.
189
208
.
11.
Hibiki, T., Mishima, K., Yoneda, K., Fujine, S., Kanda, K., and Nishihara, H., 1992, “Visualization and Measurement of Gas-Liquid Two-Phase Flow in a Narrow Rectangular Duct with Use of the Neutron Radiography and Image Processing Technique,” ANS Proceedings, 1992 National Heat Transfer Conference, Aug. 9–12, 1992, San Diego, CA., Vol. 6, pp. 101–108.
12.
Hubbard, M. G., and Dukler, A. E., 1966, “The Characterization of Flow Regimes for Horizontal Two-Phase Flow,” Proceedings of Heat Transfer and Fluid Mechanics Institute, Stanford Univ. Press, Stanford, CA.
13.
Jones
O. C.
, and
Zuber
N.
,
1975
, “
The Interrelation between Void Fraction Fluctuation and Flow Patterns in Two-Phase Flow
,”
International Journal of Multiphase Flow
, Vol.
2
, pp.
273
306
.
14.
Kennel
M. B.
, and
Isabelle
S.
,
1992
, “
Method to Distinguish Possible Chaos from Colored Noise and to Determine Embedding Parameters
,”
Physics Review A
, Vol.
46
, p.
3111
3111
.
15.
Koizumi, Y., 1992, “Air/Water Two-Phase Flow in a Horizontal Large-Diameter Pipe—Flow Regime and Pressure Drop—,” ANS Proceedings, 1992 National Heat Transfer Conference, Aug. 9-12, 1992, San Diego, CA., Vol. 6, pp. 309–320.
16.
Lahey
R. T.
,
1991
, “
An Application of Fractal and Chaos Theory in the Field of Two-Phase Flow and Heat Transfer
,”
Warmw- und Stoffubertragung
, Vol.
26
, pp.
351
363
.
17.
Lahey, R. T., Clause, A., and DiMarco, P., 1989, “Chaos and Non-Linear Dynamics of Density-Wave Instabilities in a Boiling Channel,” Proceedings of AIChE Symposium Series, Heat Transfer - Philadelphia, Vol. 85, pp. 256–261.
18.
Matsui
G.
,
1984
, “
Identification of Flow Regimes in Vertical Gas Liquid Two-Phase Flow Using Differential Pressure Fluctuations
,”
International Journal of Multiphase Flow
, Vol.
10
, pp.
711
720
.
19.
Matsui
G.
,
1986
, “
Automatic Identification of Flow Regimes in Vertical Two-Phase Flow Using Differential Pressure Fluctuations
,”
Nuclear Engineering and Design
, Vol.
95
, pp.
221
231
.
20.
Moon, F. C., 1987, Chaotic Vibration, Wiley, New York.
21.
Packard
N.
,
Muench
J.
,
Schwartz
C.
,
Mees
A. I.
, and
Rapp
P. E.
,
1980
, “
Geometry from a Time Series
,”
Physics Review Letters
, Vol.
45
, p.
712
712
.
22.
Rizwan-uddin, 1989, “Strange Attractors in Forced Two-Phase Flow Heated Channels,” Proceedings of AIChE Symposium Series, Heat Transfer - Philadelphia, Vol. 85, pp. 249–255.
23.
Rizwan-uddin
, and
Doming
J. J.
,
1986
, “
Some Nonlinear Dynamics of a Heated Channel
,”
Nuclear Science and Engineering
, Vol.
93
, pp.
1
14
.
24.
Rizwan-uddin
, and
Doming
J. J.
,
1988
, “
A Chaotic Attractor in a Periodically Forced Two-Phase Flow System
,”
Nuclear Science and Engineering
, Vol.
100
, pp.
393
404
.
25.
Saether
S.
,
Bendiksen
K.
,
Mu¨ller
J.
, and
Froland
E.
,
1990
, “
The Fractal Statistics of Liquid Slug Lengths
,”
International Journal of Multiphase Flow
, Vol.
16
, pp.
1117
1126
.
26.
Shaw, R. S., 1985, The Dripping Faucet as a Model Chaotical System, Aerial Press, Santa Cruz, CA.
27.
Sigeti
D.
, and
Horsthemke
W.
,
1987
, “
High-Frequency Power Spectrum for Systems Subject to Noise
,”
Physics Review A
, Vol.
35
, pp.
2276
2282
.
28.
Tam, S. W., and Davine, M., 1989, “Is There a Strange Attractor in a Fluidized Bed?” Measures of Complexity and Chaos, Abraham, N. B., et al., eds., Plenum Press, New York, pp. 193–197.
29.
Tam, S. W., and Davine, M., 1992, “A Study of Fluidized-Bed Dynamical Behavior: A Chaos Perspective,” Applied Chaos, Kim, J. H., and Stringer, J., eds., Wiley, New York, pp. 381–393.
30.
Tutu
N. K.
,
1982
, “
Pressure Fluctuations and Flow Pattern Recognition in Vertical Two-Phase Gas-Liquid Flow
,”
International Journal of Multiphase Flow
, Vol.
8
, pp.
443
447
.
31.
Tutu
N. K.
,
1984
, “
Pressure Drop Fluctuations and Bubble-Slug Transition in a Vertical Two-Phase Water Flow
,”
International Journal of Multiphase Flow
, Vol.
10
, pp.
211
216
.
32.
Vince
M. A.
, and
Lahey
R. T.
,
1982
, “
On the Development of an Objective Flow Regime Indicator
,”
International Journal of Multiphase Flow
, Vol.
8
, pp.
93
124
.
33.
Wambsganss
M. W.
,
Jendrzejczyk
J. A.
, and
France
D. M.
,
1991
, “
Two-Phase Flow Patterns and Transitions in a Small, Horizontal, Rectangular Channel
,”
International Journal of Multiphase Flow
, Vol.
17
, pp.
327
342
.
34.
Wambsganss
M. W.
,
Jendrzejczyk
J. A.
,
France
D. M.
, and
Obot
N. T.
,
1992
, “
Frictional Pressure Gradients in Two-Phase Flow in a Small Horizontal Rectangular Channel
,”
Experimental Thermal Fluid Science
, Vol.
5
, pp.
40
56
.
35.
Wambsganss
M. W.
,
Jendrzejczyk
J. A.
, and
France
D. M.
,
1994
, “
Determination and Characteristics of the Transition to Two-Phase Slug Flow in a Small Horizontal Channel
,”
ASME JOURNAL OF FLUIDS ENGINEERING
, Vol.
116
, pp.
140
146
.
36.
Weisman
J.
,
Duncan
O.
,
Gibson
J.
, and
Crawford
T.
,
1979
, “
Effects of Fluid Properties and Pipe Diameter in Two-Phase Flow Patterns in Horizontal Lines
,”
International Journal of Multiphase Flow
, Vol.
5
, pp.
437
462
.
37.
Wolf
A.
,
Swift
J. B.
,
Swinney
H. L.
, and
Vastano
J. A.
,
1985
, “
Determining Lyapunov Exponents from a Time Series
,”
Physica
, Vol.
16D
, pp.
285
317
.
This content is only available via PDF.
You do not currently have access to this content.