The results of an experimental study of the flow field resulting from the interaction between an impinging jet and a rotating disk are presented. The resulting flow configuration has applications in turbomachinery, for example, to intensify the local heat transfer at turbine disks. The experiments cover separate measurements of the disk-wall flow, the jet flow and interaction between the two. The flow patterns are investigated over a range of jet Reynolds numbers Rejet = 0.66-104 - 6.80-104 (based on jet diameter) and disk Reynolds numbers Redisk 3.4·105 − 6.2· 105 (based on impingement radius), achieved by varying the jet nozzle diameter, jet flow rate, rotational disk speed and the impingement radius. The measurements included the depth of jet penetration into the wall boundary layer, the travel distance of the jet against the direction of disk rotation, and the turbulent and mean velocity distribution. Another objective of this study concerns the type of flow at the impingement region (jet dominated flow or rotation dominated flow) and the conditions for the transition from one to the other. In the first part of the study, the flow structure of the jet and disk flows as well as the three-dimensional flow fields resulting from the interaction are presented.

1.
Amano
R. S.
, and
Brandt
H.
,
1984
, “
Numerical Study of Turbulent Axisymmetric Jets Impinging on a Flat Plate and Flowing into an Axisymmetric Cavity
,”
ASME JOURNAL OF FLUIDS ENGINEERING
, Vol.
106
, pp.
410
417
.
2.
Baines
W. D.
, and
Keffer
J. F.
,
1976
, “
Shear Stress and Heat Transfer at a Stagnation Point
,”
International Journal of Heat Mass Transfer
, Vol.
19
, pp.
21
26
.
3.
Baughn
J. W.
, and
Shimizu
S.
,
1989
, “
Heat Transfer Measurements From a Surface With Uniform Heat Flux and an Impinging Jet
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
111
, pp.
1096
1098
.
4.
Bogdan
Z.
,
1982
, “
Cooling of a Rotating Disk by Means of an Impinging Jet
,”
Proceedings of the 7th International Heat Transfer Conference
, Munich, Vol.
3
, pp.
333
336
.
5.
Gardon
R.
, and
Akfirat
J. C.
,
1965
, “
The Role of Turbulence in Determining the Heat Transfer Characteristics of Impinging Jets
,”
International Journal of Heat Mass Transfer
, Vol.
8
, pp.
1261
1272
.
6.
Glowacki
P.
,
1989
, “
Turbulence Characteristics of Impinging Jets Near the Deflecting Surface. The Effect of Polymer Additives
,”
Journal of Non-Newtonian Fluid Mechanics
, Vol.
33
, pp.
25
38
.
7.
Goldstein
R. J.
, and
Behbahani
A. I.
,
1982
, “
Impingement of a Circular Jet With and Without Cross Flow
,”
International Journal of Heat Mass Transfer
, Vol.
25
, No.
9
, pp.
1377
1382
.
8.
Grochowsky, L. D., 1975, “An Investigation of Flow Interactions and Heat Transfer Characteristics For Single Jet Impingement on Rotating Disks,” MS thesis, Arizona State University, Tempe, AZ.
9.
Henry, R. W., 1976, “Heat Transfer on a Rotating Disk with Single Axisymmetric Jet Impingement Cooling,” MS thesis, Arizona State University, Tempe, Ariz.
10.
Hrycak
P.
,
1983
, “
Heat Transfer From Round Impinging Jets To a Flat Plate
,”
International Journal of Heat Mass Transfer
, Vol.
26
, No.
12
, pp.
1857
1865
.
11.
Huang, P. G., Mujumdar, A. S., and Douglas, W. J. M., 1984, “Numerical Prediction of Fluid Flow and Heat Transfer Under a Turbulent Impingement Slot Jet With Surface Motion and Crossflow,” ASME Paper No. 84-WA/HT-33.
12.
Karman, Th. Von, 1956, Collected Works II, Butterfields Scientific Publishing, London, pp. 91–97.
13.
Kempf, G., 1924, “U¨ber den Reibungswiderstand rotierender Scheiben,” Vortrage auf dem Gebiet der Hydro- und Aerodynamik, Innsbrucker Kongress, 1922, Berlin, p. 168.
14.
List
E. J.
,
1982
, “
Turbulent Jets and Plumes
,”
Annual Review of Fluid Mech.
, Vol.
14
, Annual Review. Inc., Palo Alto, CA, pp.
189
212
.
15.
Littell
H.
, and
Eaton
J. K.
,
1994
, “
Turbulence Characteristics of the Boundary Layer on a Rotating Disk
,”
Journal of Fluid Mechanics
, Vol.
266
, pp.
175
207
.
16.
Metzger
D. E.
, and
Grochowsky
L. D.
,
1977
, “
Heat Transfer Between an Impinging Jet and a Rotating Disk
,”
ASME Journal of Heat Transfer
, Vol.
99
, pp.
663
667
.
17.
Metzger
D. E.
,
Mathis
W. J.
, and
Grochowsky
L. D.
,
1979
, “
Jet Cooling at the Rim of a Rotating Disk
,”
ASME Journal of Engineering for Power
, Vol.
101
, pp.
68
72
.
18.
Metzger, D. E., Bunker, R. S., and Bosch, G., 1989, “Transient Liquid Crystal Measurements of Local Heat Transfer on a Rotating Disk with Jet Impingement,” ASME paper 89-GT-287.
19.
Metzger, D. E., and Partipilo, V. A., 1989, “Single and Multiple Jet Impingement Heat Transfer on Rotating Disks,” AIAA paper 89-0174.
20.
Nakata, Y., 1989, “Laminar Impingement Heat Transfer on an Enclosed Rotating Disk,” MS thesis, Arizona State University, Ariz.
21.
Papanicolaou
P. N.
, and
List
E. J.
,
1988
, “
Investigations of Round Vertical Turbulent Buoyant Jets
,”
Journal of Fluid Mechanics
, Vol.
195
, pp.
341
391
.
22.
Popiel
C. O.
,
Tuliszka
L.
, and
Boguslawski
L.
,
1974
, “
Heat Transfer From a Rotating Disk in an Impinging Round Air Jet
,”
Proceedings of the 5th International Heat Transfer Conference
, Tokyo 1974, Vol.
3
, pp.
212
216
.
23.
Popiel
C. O.
, and
Boguslawski
L.
,
1986
, “
Local Heat Transfer From a Rotating Disk in an Impinging Round Jet
,”
ASME Journal of Heat Transfer
, Vol.
108
, pp.
357
364
.
24.
Rubel
A.
,
1980
, “
Computations of Jet Impingement on a Flat Surface
,”
AIAA Journal
, Vol.
18
, No.
2
, pp.
168
175
.
25.
Ruby, W. A., 1972, “Cooling Effect of the Impingement of Axisymmetric Air Jets on a Rotating Disk,” MS thesis, Arizona State University, Tempe, Ariz.
26.
Schlichting, H., 1979, Boundary Layer Theory, 7th ed., McGraw-Hill, p. 596.
27.
Schmidt
W.
,
1921
, “
Ein einfaches Messverfahren fu¨r Drehmomente
,”
Z. VDI
, Vol.
65
, pp.
411
444
.
28.
Tani, I., and Komatsu, Y., 1966, “Impingement of a Round Jet on a Flat Surface,” The International Congress of Applied Mechanics, Munich, Springer, pp. 672–676.
29.
Wolfshtein, M., 1970, “Some Solutions of the Plane Turbulent Impinging Jet,” ASME Paper No. 70-FE-27.
This content is only available via PDF.
You do not currently have access to this content.