The unsteady, incompressible, moderate Reynolds number flow past a rectangular cavity is experimentally and numerically investigated. Laser-Doppler anemometry, flow visualization and unsteady numerical simulation using fully second-order accuracy in time and space, were the tools employed to meet this purpose. Large-amplitude organized oscillations are reported to occur in the investigated geometry due to fluid-dynamic instability. Detailed flow visualization and unsteady predictions clearly show that the instability process involves a complex coupling of shear layer and recirculating flowfield dynamics. The paper also demonstrates the accuracy of the present calculations.

1.
Adrian, R. J., and Yao, C. S., 1985, “Power Spectra of Fluid Velocities Measured by Laser-Doppler Velocimetry,” ASME Winter Annual Meeting, Miami Beach, FL.
2.
Dimotakis, F., 1978, “Single Scattering Particle Laser Doppler Measurements of Turbulence,” AGARD CP 193, paper 10.7.
3.
Dura˜o D. F. G., Heitor, M. V., and Pereira, J. C. F., 1989, “A Laser Anemometry Study of Separated Flow Over a Model Three-Dimensional Hill,” Applications of Laser Anemometry to Fluid Mechanics, Adrian et al., eds., Springer-Verlag, pp. 93–118.
4.
Dura˜o, D. F. G., Pereira, J. C. F., and Sousa, J. M. M., 1992, “LDV Measurements of Turbulent Separated Flow Over a Cavity,” Proceedings of the Sixth International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, paper 7.2.
5.
Durst, F., Melling, A., and Whitelaw, J. H., 1981, Principles and Practice of Laser-Doppler Anemometry, 2nd ed., Academic Press, New York.
6.
Edwards
R. V.
, and
Jensen
A. S.
,
1983
, “
Particle-Sampling Statistics in Laser Anemometers: Sample-and-Hold and Saturable Systems
,”
Journal of Fluid Mechanics
, Vol.
133
, pp.
397
411
.
7.
Erdmann, J. C., and Tropea, C. D., 1981, “Turbulence-Induced Statistical Bias in Laser Anemometry,” Proceedings of the Seventh Biennal Symposium on Turbulence, Rolla, Missouri.
8.
Erdmann, J. C., Lehmann, B., and Tropea, C. D., 1984, “The Statistical Bias of Laser Anemometry Applied in Sinusoidal Flowfields,” Proceedings of the Second International Symposium on Applications of Laser Anemometry to Fluid Mechanics, Lisbon, Portugal, paper 2.4.
9.
Ghaddar
N. K.
,
Korezak
K. Z.
,
Mikic
B. B.
, and
Patera
A. T.
,
1986
, “
Numerical Investigation of Incompressible Flow in Grooved Channels. Part 1. Stability and Self-Sustained Oscillations
,”
Journal of Fluid Mechanics
, Vol.
163
, pp.
99
127
.
10.
Ghoniem
A. F.
, and
Ng
K. K.
,
1987
, “
Numerical Study of the Dynamics of a Forced Shear Layer
,”
Physics of Fluids
, Vol.
30
, No.
3
, pp.
706
721
.
11.
Ho
C. M.
, and
Huang
L. S.
,
1982
, “
Subharmonics and Vortex Merging in Mixing Layers
,”
Journal of Fluid Mechanics
, Vol.
119
, pp.
443
473
.
12.
Husain
Z. D.
, and
Hussain
K. M. F.
,
1983
, “
Natural Instability of Free Shear Layers
,”
AIAA Journal
, Vol.
21
, No.
11
, pp.
1512
1517
.
13.
King
J. L.
,
Boyle
P.
, and
Ogle
J. B.
,
1958
, “
Instability in Slotted Wall Tunnels
,”
Journal of Fluid Mechanics
, Vol.
4
, pp.
283
305
.
14.
Knisely
C.
, and
Rockwell
D.
,
1982
, “
Self-Sustained Low-Frequency Components in an Impinging Shear Layer
,”
Journal of Fluid Mechanics
, Vol.
116
, pp.
157
186
.
15.
Kobayashi
M. H.
,
Pereira
J. C. F.
, and
Sousa
J. M. M.
,
1993
, “
Comparison of Several Open Boundary Numerical Treatments for Laminar Recirculating Flows
,”
International Journal of Numerical Methods in Fluids
, Vol.
16
, pp.
403
419
.
16.
Leonard
B. P.
,
1979
, “
A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation
,”
Computer Methods in Applied Mechanical Engineering
, Vol.
19
, pp.
59
98
.
17.
Najm
H. N.
, and
Ghoniem
A. F.
,
1991
, “
Numerical Simulation of the Convective Instability in a Dump Combustor
,”
AIAA Journal
, Vol.
29
, No.
6
, pp.
911
919
.
18.
Orlanski
I.
,
1976
, “
A Simple Boundary Condition for Unbounded Hyperbolic Flows
,”
Journal of Computational Physics
, Vol.
21
, pp.
251
269
.
19.
Pereira
J. C. F.
, and
Sousa
J. M. M.
,
1993
, “
Finite Volume Calculations of Self-Sustained Oscillations in a Grooved Channel
,”
Journal of Computational Physics
, Vol.
106
, No.
1
, pp.
19
29
.
20.
Rockwell
D.
,
1977
, “
Prediction of Oscillation Frequencies for Unstable Flow Past Cavities
,”
ASME JOURNAL OF FLUIDS ENGINEERING
, Vol.
99
, pp.
294
300
.
21.
Rockwell
D.
, and
Knisely
C.
,
1979
, “
The Organized Nature of Flow Impingement Upon a Corner
,”
Journal of Fluid Mechanics
, Vol.
93
, pp.
413
432
.
22.
Rockwell
D.
, and
Naudascher
E.
,
1978
, “
Review—Self-Sustaining Oscillations of Flow Past Cavities
,”
ASME JOURNAL OF FLUIDS ENGINEERING
, Vol.
100
, pp.
152
165
.
23.
Rockwell
D.
, and
Naudascher
E.
,
1979
, “
Self-Sustained Oscillations of Impinging Free Shear Layers
,”
Annual Revue of Fluid Mechanics
, Vol.
11
, pp.
67
94
.
24.
Sarohia
V.
,
1977
, “
Experimental Investigation of Oscillations in Flows Over Shallow Cavities
,”
AIAA Journal
, Vol.
15
, No.
7
, pp.
984
991
.
25.
Sinha
S. N.
,
Gupta
A. K.
, and
Oberai
M. M.
,
1982
, “
Laminar Separating Flow Over Backsteps and Cavities Part II: Cavities
,”
AIAA Journal
, Vol.
20
, No.
3
, pp.
370
375
.
26.
Sparrow
E. M.
,
Vemuri
S. B.
, and
Kadle
D. S.
,
1983
, “
Enhanced and Local Heat Transfer, Pressure Drop, and Flow Visualization for Arrays of Block-Like Electronic Components
,”
International Journal of Heat and Mass Transfer
, Vol.
26
, pp.
689
699
.
27.
Srikantaiah
D. V.
, and
Coleman
H. W.
,
1985
, “
Turbulence Spectra from Individual Realization in Laser Velocimetry Data
,”
Experiments in Fluids
, Vol.
3
, pp.
35
44
.
28.
Yanta, W. J., and Smith, R. A., 1978, “Measurements of Turbulent-Transport Properties with a Laser Doppler Velocimeter,” AIAA paper 73-169, Eleventh Aerospace Science Meeting, Washington.
29.
Ziada
S.
, and
Rockwell
D.
,
1982
, “
Oscillations of an Unstable Mixing Layer Impinging Upon an Edge
,”
Journal of Fluid Mechanics
, Vol.
124
, pp.
307
334
.
This content is only available via PDF.
You do not currently have access to this content.