1.
Allen
D. N. deG.
, and
Southwell
R. V.
,
1955
, “
Relaxation Methods Applied to Determine the Motion in Two Dimensions of a Viscous Fluid Past a Fixed Cylinder
,”
Quarterly Journal of Mechanics and Applied Mathematics
, Vol.
8
, pp.
129
145
.
2.
Ferziger
J. H.
,
1993
, “
Estimation and Reduction of Numerical Error
,”
Symposium on Quantification of Uncertainty in Computational Fluid Dynamics
, FED Vol.
158
, ASME Fluids Engineering Division, Summer Meeting, Washington, D.C., June
20–24
, pp.
1
8
.
3.
Ferziger
J. H.
,
1994
, “
Comments on the Policy Statement on Numerical Accuracy
,”
ASME JOURNAL OF FLUIDS ENGINEERING
, Vol.
116
, p.
396
396
.
4.
Freitas
C. J.
, “
Response: To the Comments of Drs. W. Shyy and M. Sindir
,”
ASME JOURNAL OF FLUIDS ENGINEERING
, Vol.
116
, p.
198
198
.
5.
Fromm
J. E.
,
1968
, “
A Method for Reducing Dispersion Error in Convective Difference Schemes
,”
Journal of Computational Physics
, Vol.
3
, pp.
176
189
.
6.
Godunov
S. K.
,
1959
, “
A Difference Method for Numerical Calculation of Discontinuous Solutions of the Equations of Hydrodynamics
,”
Matematik Sbornik
, Vol.
47
, pp.
271
306
.
7.
Leonard
B. P.
,
1994
, “
Note on the von Neumann Stability of Explicit One-Dimensional Convection Schemes
,”
Computer Methods in Applied Mechanics and Engineering
, Vol.
118
, pp.
29
46
.
8.
Leonard, B. P., and Drummond, J. E., 1995, “Why You Should Not Use ‘Hybrid’, ‘Power-Law’, or Related Exponential Schemes for Convective Modelling—There Are Much Better Alternatives,” International Journal for Numerical Methods in Fluids, Vol. 20, (to appear).
9.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, McGraw-Hill, New York.
10.
Schneider
S. H.
,
Chu
C. K.
, and
Leonard
B. P.
,
1971
, “
Numerical Study of the Magnetic Shock Tube
,”
The Physics of Fluids
, Vol.
14
, pp.
1103
1108
.
11.
Spalding
D. B.
,
1972
, “
A Novel Finite Difference Formulation for Differential Expressions Involving Both First and Second Derivatives
,”
International Journal for Numerical Methods in Engineering
, Vol.
4
, pp.
551
559
.
12.
Sweby
P. K.
,
1984
, “
High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws
,”
SIAM Journal of Numerical Analysis
, Vol.
21
, pp.
995
1011
.
13.
Telionis
D. P.
,
1994
,
Editorial
,
ASME JOURNAL OF FLUIDS ENGINEERING
, Vol.
116
, p.
1
1
.
14.
van Leer
B.
,
1973
, “
Towards the Ultimate Conservative Difference Scheme. I. The Quest of Monotonicity
,”
Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics
, Vol.
1
(Lecture Notes in Physics, Vol. 18), H. Cabannes and R. Temam, eds., Springer-Verlag, New York, pp.
163
168
.
This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.