A nonorthogonal, collocated finite-volume scheme, based on a pressure-correction strategy and originally devised for general-geometry incompressible turbulent recirculating flow, has been extended to compressible transonic conditions. The key elements of the extension are a solution for flux variables and the introduction of streamwise-directed density-retardation which is controlled by Mach-number-dependent monitor functions, and which is applied to all transported flow properties. Advective fluxes are approximated using the quadratic scheme QUICK or the second-order TVD scheme MUSCL, the latter applied to all transport equations, including those for turbulence properties. The procedure incorporates a number of turbulence models including a new low-Re k–ε eddy-viscosity variant and a Reynolds-stress-transport closure. The predictive capabilities of the algorithm are illustrated by reference to a number of inviscid and turbulent transonic applications, among them a normal shock in a Laval nozzle, combined oblique-shock reflection and shock-shock interaction over a bump in a channel and shock-induced boundary-layer separation over channel bumps. The last-named application was computed both with eddy-viscosity models and Reynolds-stress closure, leading to the conclusion that the latter yields a much greater sensitivity of the boundary layer to the shock and, arising therefrom, a more pronounced λ-shock structure, earlier separation and more extensive recirculation. On the other hand, the stress closure is found to return an insufficient rate of wake recovery following reattachment.

This content is only available via PDF.
You do not currently have access to this content.