This paper illustrates the impact of seal configuration on the through-flow leakage in centrifugal pumps with shrouded impellers. The flow model is based on the Petrov-Galerkin finite element method, and the computational domain permits the primary/secondary flow interaction at both ends of the clearance gap. The model is applied to a hydraulic pump with two different seal configurations for the purpose of comparison. The computed results show a strong dependency of the leakage flow percentage and swirl-velocity retention on the overall shape of the shroud-to-housing passage including, in particular, the seal geometry. The results are generally consistent with documented observations and measurements in similar pump stages. From a rotordynamic standpoint, the current computational model conceptually provides the centered-rotor “zeroth-order” flow field for existing perturbation models of fluid/rotor interaction. The flow model is applied to two different secondary passage configurations of a centrifugal pump, and the results used in interpreting existing rotordynamic data concerning the same passage configurations.

This content is only available via PDF.
You do not currently have access to this content.