Turbulent swirling flow in a short closed cylindrical chamber has been measured with laser Doppler anemometry. The swirl was generated by a rotating roughened disk and measured during steady and transient conditions with a smooth disk. The velocity and turbulence fields were found to be strongly dependent on swirl Reynolds numbers (in the range 0.3 × 106 < ΩR2/v < 0.6 × 106) and on chamber length-to-diameter ratio (in the range 0.1 ≤ L/D ≤ 0.5). With a roughened disk the flow was nearly independent of Reynolds number though still strongly dependent on chamber length-to-diameter ratio.

This content is only available via PDF.
You do not currently have access to this content.