A numerical simulation of a three-dimensional turbulent flow with longitudinal vortices embedded in the boundary layer on a channel wall is presented. The flow is described by the unsteady incompressible Reynolds averaged Navier-Stokes equations and the standard k–ε turbulence model. A finite difference scheme based on the SOLA-algorithm is developed for the numerical solution of the governing equations. Comparison with the experimental data of Pauley and Eaton (1988 a, b) shows that the numerical computations predict the general characteristics of the flow correctly. Agreement to within 13 percent is obtained for the worst location in mean velocity fields. The average deviation of predicted mean streamwise velocity from the experimental data is 3.6 percent.

This content is only available via PDF.
You do not currently have access to this content.