The generation mechanism of turbulence-driven secondary flows in a square duct is numerically investigated in the present study by using an anisotropic low-Reynolds-number k–ε turbulence model. Special attention is directed to the distributions of turbulence quantities, which are responsible for the secondary flow generation, such as the anisotropy of normal Reynolds stresses and the secondary Reynolds shear stress acting on the cross-sectional plane. The vorticity transport process is also discussed in detail, based on the numerical evaluation of the individual terms which appear in the streamwise vorticity transport equation.

This content is only available via PDF.
You do not currently have access to this content.