This paper is concerned with axial pressure gradient in single-phase and two-phase flow at low void fraction in a narrow annular space between two concentric cylinders, the inner one rotating. From experimental results, the coupling function (inertial forces/centrifugal forces) is parameterized by Taylor or Rossby numbers for two values of the intercylindrical width (clearance). The results are discussed with regard to different flow regimes and it is shown in particular that transition from the turbulent vorticed regime to the turbulent regime occurs at Ro ≃ 1. The proposed correlation agrees in a satisfactory manner to all the regimes studied in our experiments and in those given in the bibliography. In addition, original tests with a two-phase liquid/gas flow at 5 percent G.O.R. (gas oil ratio), for a finely dispersed gas phase are also reported. These results indicate a similar behavior to single-phase flows, justifying the transposition of the same correlation in the framework of the homogeneous model.

This content is only available via PDF.
You do not currently have access to this content.