This paper reports experimental investigations on mean and turbulence characteristics of three-dimensional, incompressible, isothermal turbulent wall jets generated from orifices having the shapes of various segments of a circle. In Part 1, the mean flow characteristics are presented. The turbulence characteristics are presented in Part 2. The influence of the geometry on the characteristic decay region of the wall jet is brought out and the differences with other shapes are discussed. Mean velocity profiles both in the longitudinal and lateral planes are measured and compared with some of the theoretical profiles. Wall jet expansion rates and behavior of skin-friction are discussed. The influence of the geometry of the orifice on the various wall jet properties is presented and discussed. Particularly the differences between this class of geometry and rectangular geometries are critically discussed.

This content is only available via PDF.
You do not currently have access to this content.