Previous studies have shown that normalized Reynolds shear stress and turbulent heat fluxes in asymptotic plane turbulent plumes are significantly higher than in asymptotic plane turbulent jets. This paper describes an attempt to relate this increase to the length scales in the flow. Hot/cold interface intermittency and integral-length-scale distributions were measured in both these flows. The interface-intermittency distributions were found to be bell-shaped in the plume in contrast to a nearly top-hat shape in a jet, thus providing confirmation of the role of buoyancy in generating larger scales in plumes. These larger scales cause the integral length of turbulence in the plume to increase by nearly 15 percent relative to the non-buoyant jet.

This content is only available via PDF.
You do not currently have access to this content.