A finite-difference solution scheme is used to study the limitations and capabilities of the boundary-layer equation model for flow through abrupt, symmetric expansions. Solutions of the boundary-layer equations are compared with previous numerical predictions and experimental measurements. Some flow parameters are not well predicted for Reynolds numbers below 200. Global iteration over the flow field to include upstream effects does not significantly influence the predictions. Axisymmetric and two-dimensional flows are investigated. The effect of initial conditions is discussed

This content is only available via PDF.
You do not currently have access to this content.