Turbulent flow measurements have been performed in a two-dimensional flow cell which is a 1/15-scale model of the Fast Flux Test Facility nuclear reactor outlet plenum. In a steady water flow, maps of the mean velocity field, turbulence kinetic energy, and Reynolds stress have been obtained using a laser doppler anemometer. The measurements are compared to numerical simulations using both the K–ε and K–σ two-equation turbulence models. A relationship between K–σ and K–ε turbulence models is derived, and the two models are found to be nearly equivalent. The steady-state mean velocity data are predicted well through-out most of the test cell. Calculated spatial distributions of the scalar turbulence quantities are qualitatively similar for both models; however, the predicted distributions do not match the data over major portions of the flow area. The K–σ model provides better estimates of the turbulence quantity magnitudes. The predicted results are highly sensitive to small changes in the turbulence model constants and depend heavily on the levels of inlet turbulence. However, important differences between prediction and measurement cannot be significantly reduced by simple changes to the model’s constants.

This content is only available via PDF.
You do not currently have access to this content.