Measurements of the three components of velocity and their corresponding fluctuations have been obtained by laser-Doppler anemometry mainly near TDC of compression in a model IC engine motored at 200 rpm with compression ratio of 6.7. The flow configurations comprised an axisymmetric cylinder head with and without upstream induced swirl and each of a flat piston and two centrally located, cylindrical and re-entrant, bowl-in-piston arrangements. In the absence of swirl and squish, the intake-generated mean motion and turbulence decayed considerably by the end of compression. The two piston-bowl configurations, however, resulted in a compression-induced squish motion with consequent formation of a toroidal vortex occupying the whole bowl space. Interacton of swirl, carried from intake and persisting through compression, with squish generated near TDC profoundly altered the axial flow structure. In the case of the cylindrical bowl, the sense of the vortex was reversed by swirl and, in the reentrant bowl, increased the number of vortices to two. The swirling motion inside the cylindrical bowl was close to solid body rotation while the re-entrant bowl gave rise to more complex flow patterns. Squish, in the presence or absence of swirl, did not augment the turbulent energy inside the cylindrical bowl contrary to the reentrant configuration where turbulence generation was observed.

This content is only available via PDF.
You do not currently have access to this content.