Experiments were performed to explore the relationships between liquid-saturated and gas-saturated deformable porous media. Water and air served as the participating fluids. From quasi-static compression experiments (no fluid flow), it was found that the force required to compress a given deformable porous material is substantially less when the material is water-saturated than when it is in air. Water flow measurements yielded flow rate-pressure drop results which are compared with analytical predictions. The predictions were based on input values of certain material flow parameters which had been determined in previous air flow experiments. The observed level of agreement between the predictions and the water flow measurements lends support to the notion that the flow parameters are independent of the participating fluid. In the course of establishing the effects of the participating fluid, the stress relaxation and aging phenomena were quantified. The former is a relaxation of the internal stress in a deformable material which occurs after a compression is imposed and maintained. The latter is a process whereby the deformation characteristics change when the material is subjected to a succession of compressions.

This content is only available via PDF.
You do not currently have access to this content.