The overall objective of this experimental program was to quantify the effects of rotor-stator axial spacing on the fundamental time-variant aerodynamics relevant to forced response in turbomachinery. This was accomplished in a large-scale, low-speed, single-stage research compressor which permitted two rotor-stator axial spacing ratios representative of those found in advanced design compressors to be investigated. At each value of the axial spacing ratio, the aerodynamically induced fluctuating surface pressure distributions on the downstream vane row, with the primary source of excitation being the upstream rotor wakes, were measured over a wide range of compressor operating conditions. The velocity fluctuations created by the passage of the rotor blades were measured in the nonrotating coordinate system. Data obtained described the variation of the rotor wake with both loading and axial distance from the rotor as parameters. These data also served as a reference in the analysis of the resulting time-variant pressure signals on the vane surfaces.

This content is only available via PDF.
You do not currently have access to this content.