The predictions of several turbulence models are compared with experimental data for flows containing regions of recirculation using an inverse finite-difference method to solve the boundary layer equations. A new turbulence model which employs a one-dimensional transport equation for the outer layer length scale is seen to provide the best agreement with experimental measurements beyond separation. Use of the solution of a modeled form of the turbulence kinetic energy equation to supply a turbulence velocity scale in models resulted in no noticeable improvement in predictions over models which utilized purely algebraic and mean flow quantities to obtain this velocity scale.

This content is only available via PDF.
You do not currently have access to this content.