Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Separate-layer injection technology is a highly significant approach for enhancing oil recovery in the later stages of oilfield production. Both separate-layer and general injection information are crucial parameters in multi-layer oilfield injection systems. However, the significance of general injection information is usually overlooked during the optimization process of separate-layer injection. Moreover, conventional optimization schemes for separate-layer injection fail to meet the immediate and dynamic demands of well production. Consequently, a separate-layer injection optimization method based on artificial neural network and residual network (ANN-Res) model was proposed. Firstly, the primary controlling factors for production were identified through grey correlation analysis and ablation experiments. Then, a data-driven model was established with an artificial neural network (ANN), in which the residual block was utilized to incorporate general injection information, eventually forming an ANN-Res model that integrates separate-layer and general injection information. Finally, a workflow for separate-layer injection optimization was designed in association with the ANN-Res model. Analysis of primary controlling factor for production shows that the combination of separate-layer and general injection information for production prediction leads to redundancy. The results of injection–production prediction demonstrate that the ANN-Res model is significantly better than that of the ANN model which only inputs separate-layer or general injection information. Furthermore, the result of optimization proves the proposed method can be successfully applied to injection optimization, realizing the purpose of increasing oil production and decreasing water cuts, thereby improving oilfield development.

References

1.
Gomaa
,
S.
,
Soliman
,
A. A.
,
Nasr
,
K.
,
Emara
,
R.
,
El-hoshoudy
,
A. N.
, and
Attia
,
A. M.
,
2022
, “
Development of Artificial Neural Network Models to Calculate the Areal Sweep Efficiency for Direct Line, Staggered Line Drive, Five-Spot, and Nine-Spot Injection Patterns
,”
Fuel
,
317
, p.
123564
.
2.
Hirasaki
,
G. J.
,
Miller
,
C. A.
, and
Puerto
,
M.
,
2021
, “
Recent Advances in Surfactant EOR
,”
SPE J.
,
16
(
04
), pp.
889
907
.
3.
Larestani
,
A.
,
Mousavi
,
S. P.
,
Hadavimoghaddam
,
F.
, and
Hemmati-Sarapardeh
,
A.
,
2022
, “
Predicting Formation Damage of Oil Fields Due to Mineral Scaling During Water-Flooding Operations: Gradient Boosting Decision Tree and Cascade-Forward Back-Propagation Network
,”
J. Petrol. Sci. Eng.
,
208
, p.
109315
.
4.
Yasari
,
E.
,
Pishvaie
,
M. R.
,
Khorasheh
,
F.
,
Salahshoor
,
K.
, and
Kharrat
,
R.
,
2013
, “
Application of Multi-Criterion Robust Optimization in Water-Flooding of Oil Reservoir
,”
J. Petrol. Sci. Eng.
,
109
, pp.
1
11
.
5.
Kalam
,
S.
,
Yousuf
,
U.
,
Abu-Khamsin
,
S. A.
,
Waheed
,
U. B.
, and
Khan
,
R. A.
,
2022
, “
An ANN Model to Predict Oil Recovery From a 5-Spot Waterflood of a Heterogeneous Reservoir
,”
J. Petrol. Sci. Eng.
,
210
, p.
110012
.
6.
Makhotin
,
I.
,
Orlov
,
D.
, and
Koroteev
,
D.
,
2022
, “
Machine Learning to Rate and Predict the Efficiency of Waterflooding for Oil Production
,”
Energies
,
15
(
3
), p.
1199
.
7.
Zhong
,
Z.
,
Sun
,
A. Y.
,
Wang
,
Y.
, and
Ren
,
B.
,
2020
, “
Predicting Field Production Rates for Waterflooding Using a Machine Learning-Based Proxy Model
,”
J. Petrol. Sci. Eng.
,
194
, p.
107574
.
8.
Horowitz
,
B.
,
Afonso
,
S. M. B.
, and
de Mendonça
,
C. V. P.
,
2013
, “
Surrogate Based Optimal Waterflooding Management
,”
J. Petrol. Sci. Eng.
,
112
, pp.
206
219
.
9.
Hourfar
,
F.
,
Moshiri
,
B.
,
Salahshoor
,
K.
,
Zaare-Mehrjerdi
,
M.
, and
Pourafshary
,
P.
,
2016
, “
Adaptive Modeling of Waterflooding Process in Oil Reservoirs
,”
J. Petrol. Sci. Eng.
,
146
, pp.
702
713
.
10.
Zhang
,
H.
,
Liang
,
Y.
,
Zhou
,
X.
,
Yan
,
X.
,
Qian
,
C.
, and
Liao
,
Q.
,
2017
, “
Sensitivity Analysis and Optimal Operation Control for Large-Scale Waterflooding Pipeline Network of Oilfield
,”
J. Petrol. Sci. Eng.
,
154
, pp.
38
48
.
11.
van Essen
,
G. M.
,
Zandvliet
,
M. J.
,
den Hof
,
P. M. J. V.
,
Bosgra
,
O. H.
, and
Jansen
,
J. D.
,
2009
, “
Robust Waterflooding Optimization of Multiple Geological Scenarios
,”
SPE J.
,
14
(
01
), pp.
202
210
.
12.
Hong
,
A.
,
Bratvold
,
R. B.
, and
Lake
,
L. W.
,
2019
, “
Fast Analysis of Optimal Improved-Oil-Recovery Switch Time Using a Two-Factor Production Model and Least-Squares Monte Carlo Algorithm
,”
SPE Reservoir. Eval. Eng.
,
22
(
03
), pp.
1144
1160
.
13.
Ogbeiwi
,
P.
,
Aladeitan
,
Y.
, and
Udebhulu
,
D.
,
2018
, “
An Approach to Waterflood Optimization: Case Study of the Reservoir X
,”
J. Petrol. Explor. Prod. Technol.
,
8
(
1
), pp.
271
289
.
14.
Zhang
,
K.
,
Zhang
,
L.
,
Yao
,
J.
,
Chen
,
Y.
, and
Lu
,
R.
,
2014
, “
Water Flooding Optimization With Adjoint Model Under Control Constraints
,”
J. Hydrodyn.
,
26
(
1
), pp.
75
85
.
15.
Ng
,
C. S. W.
,
Jahanbani Ghahfarokhi
,
A.
, and
Nait Amar
,
M.
,
2021
, “
Application of Nature-Inspired Algorithms and Artificial Neural Network in Waterflooding Well Control Optimization
,”
J. Petrol. Explor. Prod. Technol.
,
11
(
7
), pp.
3103
3127
.
16.
El-Khatib
,
N. A.
,
2011
, “
Waterflooding Performance in Inclined Communicating Stratified Reservoirs
,”
SPE J.
,
17
(
01
), pp.
31
42
. .
17.
El-Khatib
,
N. A. F.
,
2012
, “
The Modification of the Dykstra-Parsons Method for Inclined Stratified Reservoirs
,”
SPE J.
,
17
(
04
), pp.
1029
1040
.
18.
Li
,
C.
,
Lan
,
H.
, and
An
,
R.
,
2023
, “
Simulation on Adjustment Ability of Adjustable Water Nozzle in Separate-Layer Water Injection
,”
Pet. Sci. Technol.
,
42
(
16
), pp.
2019
2043
.
19.
Zhao
,
X.
,
2017
, “
The Research of New Type Stratified Water Injection Process Intelligent Measurement Technology
,”
AIP Conf. Proc.
,
1890
(
1
), p.
040048
.
20.
Zhang
,
L.
,
Xu
,
C.
,
Zhang
,
K.
,
Yao
,
C.
,
Yang
,
Y.
, and
Yao
,
J.
,
2020
, “
Production Optimization for Alternated Separate-Layer Water Injection in Complex Fault Reservoirs
,”
J. Petrol. Sci. Eng.
,
193
, p.
107409
.
21.
Rashid
,
B.
,
Muggeridge
,
A. H. H.
,
Bal
,
A.
, and
Williams
,
G.
,
2012
, “
Quantifying the Impact of Permeability Heterogeneity on Secondary-Recovery Performance
,”
SPE J.
,
17
(
02
), pp.
455
468
.
22.
Ding
,
J.
,
2017
, “
Experimental Study on Commingled Injection in Multilayered Low-Permeability Reservoir
,”
Geosys. Eng.
,
20
(
2
), pp.
71
80
.
23.
Ladipo
,
L.
,
Blunt
,
M. J.
, and
King
,
P. R.
,
2022
, “
Crossflow Effects on Low Salinity Displacement in Stratified Heterogeneity
,”
J. Petrol. Sci. Eng.
,
208
, p.
109565
.
24.
Bautista
,
J. F.
, and
Dahi Taleghani
,
A.
,
2016
, “
The State of the Art and Challenges in Geomechanical Modeling of Injector Wells: A Review Paper
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012910
.
25.
Ding
,
Z. P.
,
Liu
,
Y. T.
,
Zhang
,
Y.
, and
Ao
,
K.
,
2012
, “
A Quantitative 3D Physical Simulation Method of Waterflooding in Fractured Reservoirs
,”
Pet. Sci. Technol.
,
30
(
12
), pp.
1250
1261
.
26.
He
,
Y.
,
Cheng
,
S.
,
Li
,
L.
,
Mu
,
G.
,
Zhang
,
T.
,
Xu
,
H.
,
Qin
,
J.
, and
Yu
,
H. Y.
,
2016
, “
Waterflood Direction and Front Characterization With Four-Step Work Flow: A Case Study in Changqing Oil Field China
,”
SPE Reserv. Eval. Eng.
,
20
(
03
), pp.
708
725
.
27.
Guo
,
Z.
, and
Reynolds
,
A. C.
,
2018
, “
Robust Life-Cycle Production Optimization With a Support-Vector-Regression Proxy
,”
SPE J.
,
23
(
06
), pp.
2409
2427
.
28.
Sayyafzadeh
,
M.
,
Pourafshary
,
P.
,
Haghighi
,
M.
, and
Rashidi
,
F.
,
2011
, “
Application of Transfer Functions to Model Water Injection in Hydrocarbon Reservoir
,”
J. Petrol. Sci. Eng.
,
78
(
1
), pp.
139
148
.
29.
Salem
,
A. M.
,
Yakoot
,
M. S.
, and
Mahmoud
,
O.
,
2022
, “
Addressing Diverse Petroleum Industry Problems Using Machine Learning Techniques: Literary Methodology─Spotlight on Predicting Well Integrity Failures
,”
ACS Omega
,
7
(
3
), pp.
2504
2519
.
30.
Siddig
,
O. M.
,
Al-Afnan
,
S. F.
,
Elkatatny
,
S. M.
, and
Abdulraheem
,
A.
,
2022
, “
Drilling Data-Based Approach to Build a Continuous Static Elastic Moduli Profile Utilizing Artificial Intelligence Techniques
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
023001
.
31.
Vo Thanh
,
H.
,
Dai
,
Z.
,
Du
,
Z.
,
Yin
,
H.
,
Yan
,
B.
,
Soltanian
,
M. R.
,
Xiao
,
T.
,
McPherson
,
B.
, and
Abualigah
,
L.
,
2024
, “
Artificial Intelligence-Based Prediction of Hydrogen Adsorption in Various Kerogen Types: Implications for Underground Hydrogen Storage and Cleaner Production
,”
Int. J. Hydrogen Energy
,
57
, pp.
1000
1009
.
32.
Vo Thanh
,
H.
,
Zhang
,
H.
,
Dai
,
Z.
,
Zhang
,
T.
,
Tangparitkul
,
S.
, and
Min
,
B.
,
2024
, “
Data-Driven Machine Learning Models for the Prediction of Hydrogen Solubility in Aqueous Systems of Varying Salinity: Implications for Underground Hydrogen Storage
,”
Int. J. Hydrogen Energy
,
55
, pp.
1422
1433
.
33.
Yarveicy
,
H.
,
Ghiasi
,
M. M.
, and
Mohammadi
,
A. H.
,
2018
, “
Determination of the Gas Hydrate Formation Limits to Isenthalpic Joule–Thomson Expansions
,”
Chem. Eng. Res. Des.
,
132
, pp.
208
214
.
34.
Yarveicy
,
H.
,
Habibi
,
A.
,
Pegov
,
S.
,
Zolfaghari
,
A.
, and
Dehghanpour
,
H.
,
2018
, “
Enhancing Oil Recovery by Adding Surfactants in Fracturing Water: A Montney Case Study
.” .
35.
Al Dhaif
,
R.
,
Ibrahim
,
A. F.
, and
Elkatatny
,
S.
,
2022
, “
Prediction of Surface Oil Rates for Volatile Oil and Gas Condensate Reservoirs Using Artificial Intelligence Techniques
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
033001
.
36.
Huan
,
L.
,
Haojie
,
M.
,
Tian
,
X.
,
Hui
,
M.
,
Zihan
,
Y.
,
Lihao
,
Z.
, and
Zhang
,
Y. P.
,
2022
, “
Application of Big Data Technology in Petroleum Engineering Intelligent Information System
,”
Proceedings of the 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA)
,
Chang Chun, China
,
Feb. 25–27
, pp.
191
194
.
37.
Jia
,
D.
,
Zhang
,
J.
,
Li
,
Y.
,
Wu
,
L.
, and
Qiao
,
M.
,
2023
, “
Recent Development of Smart Field Deployment for Mature Waterflood Reservoirs
,”
Sustainability
,
15
(
1
), p.
784
.
38.
Liu
,
W.
,
Liu
,
W. D.
, and
Gu
,
J.
,
2020
, “
A Machine Learning Method to Infer Inter-Well Connectivity Using Bottom-Hole Pressure Data
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
103007
.
39.
Mirza
,
M. A.
,
Ghoroori
,
M.
, and
Chen
,
Z.
,
2022
, “
Intelligent Petroleum Engineering
,”
Engineering
,
18
, pp.
27
32
.
40.
Elgibaly
,
A. A.
, and
Elkamel
,
A. M.
,
1998
, “
A New Correlation for Predicting Hydrate Formation Conditions for Various Gas Mixtures and Inhibitors
,”
Fluid Phase Equilib.
,
152
(
1
), pp.
23
42
.
41.
Zabihi
,
R.
,
Schaffie
,
M.
,
Nezamabadi-pour
,
H.
, and
Ranjbar
,
M.
,
2011
, “
Artificial Neural Network for Permeability Damage Prediction Due to Sulfate Scaling
,”
J. Petrol. Sci. Eng.
,
78
(
3
), pp.
575
581
.
42.
Ahmadloo
,
F.
,
Asghari
,
K.
, and
Renouf
,
G.
,
2010
, “
Performance Prediction of Waterflooding in Western Canadian Heavy Oil Reservoirs Using Artificial Neural Network
,”
Energy Fuels
,
24
(
4
), pp.
2520
2526
.
43.
Vo Thanh
,
H.
,
Sugai
,
Y.
, and
Sasaki
,
K.
,
2020
, “
Application of Artificial Neural Network for Predicting the Performance of CO2 Enhanced Oil Recovery and Storage in Residual Oil Zones
,”
Sci. Rep.
,
10
(
1
), p.
18204
.
44.
Dang
,
C.
,
Nghiem
,
L.
,
Fedutenko
,
E.
,
Gorucu
,
S. E.
,
Yang
,
C.
,
Mirzabozorg
,
A.
,
Nguyen
,
N.
, and
Chen
,
Z.
,
2020
, “
AI Based Mechanistic Modeling and Probabilistic Forecasting of Hybrid Low Salinity Chemical Flooding
,”
Fuel
,
261
, p.
116445
.
45.
Negash
,
B. M.
, and
Yaw
,
A. D.
,
2020
, “
Artificial Neural Network Based Production Forecasting for a Hydrocarbon Reservoir Under Water Injection
,”
Petrol. Explor. Dev.
,
47
(
2
), pp.
383
392
.
46.
Kalam
,
S.
,
Abu-Khamsin
,
S. A.
,
Al-Yousef
,
H. Y.
, and
Gajbhiye
,
R.
,
2021
, “
A Novel Empirical Correlation for Waterflooding Performance Prediction in Stratified Reservoirs Using Artificial Intelligence
,”
Neural Comput. Appl.
,
33
(
7
), pp.
2497
2514
.
47.
Xiong
,
X.
, and
Lee
,
K. J.
,
2020
, “
Data-Driven Modeling to Optimize the Injection Well Placement for Waterflooding in Heterogeneous Reservoirs Applying Artificial Neural Networks and Reducing Observation Cost
,”
Energy Explor. Exploit.
,
38
(
6
), pp.
2413
2435
.
48.
Amiri Kolajoobi
,
R.
,
Emami Niri
,
M.
,
Amini
,
S.
, and
Haghshenas
,
Y.
,
2023
, “
A Data-Driven Proxy Modeling Approach Adapted to Well Placement Optimization Problem
,”
ASME J. Energy Resour. Technol.
,
145
(
1
), p.
011007
.
49.
Cao
,
L.
,
Xiu
,
J.
,
Cheng
,
H.
,
Wang
,
H.
,
Xie
,
S.
,
Zhao
,
H.
, and
Sheng
,
G.
,
2020
, “
A New Methodology for the Multilayer Tight Oil Reservoir Water Injection Efficiency Evaluation and Real-Time Optimization
,”
Geofluids
,
2020
, p.
e8854545
.
50.
Gao
,
D.
,
Ye
,
J.
,
Liu
,
Y.
,
Pan
,
S.
,
Hu
,
Y.
,
Yuan
,
H.
,
Gao
,
D.
, et al
,
2016
, “
Coupled Numerical Simulation of Multi-Layer Reservoir Developed by Lean-Stratified Water Injection
,”
J. Petrol. Explor. Prod. Technol.
,
6
(
4
), pp.
719
727
.
51.
Ma
,
K.
,
Li
,
A.
,
Guo
,
S.
,
Pang
,
J.
,
Xue
,
Y.
, and
Zhou
,
Z.
,
2019
, “
Techniques for Improving the Water-Flooding of Oil Fields During the High Water-Cut Stage
,”
Oil Gas Sci. Technol.—Rev. Energies Nouvelles
,
74
, p.
69
.
52.
Zhou
,
Y.
,
Lei
,
S.
,
Du
,
X.
,
Ju
,
S.
, and
Li
,
W.
,
2021
, “
Injection-Production Optimization of Carbonate Reservoir Based on an Inter-Well Connectivity Model
,”
Energy Explor. Exploit.
,
39
(
5
), pp.
1666
1684
.
53.
Tang
,
L.
,
Li
,
J.
,
Lu
,
W.
,
Lian
,
P.
,
Wang
,
H.
,
Jiang
,
H.
,
Wang
,
F.
, and
Jia
,
H.
,
2021
, “
Well Control Optimization of Waterflooding Oilfield Based on Deep Neural Network
,”
Geofluids
,
2021
, p.
e8873782
.
54.
Golzari
,
A.
,
Haghighat Sefat
,
M.
, and
Jamshidi
,
S.
,
2015
, “
Development of an Adaptive Surrogate Model for Production Optimization
,”
J. Petrol. Sci. Eng.
,
133
, pp.
677
688
.
55.
Yang
,
Y.
,
Yang
,
H.
,
Tao
,
L.
,
Yao
,
J.
,
Wang
,
W.
,
Zhang
,
K.
, and
Linda
,
L.
,
2019
, “
Microscopic Determination of Remaining Oil Distribution in Sandstones With Different Permeability Scales Using Computed Tomography Scanning
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
092903
.
56.
He
,
F.
,
Liu
,
T.
, and
Tao
,
D.
,
2020
, “
Why ResNet Works? Residuals Generalize
,”
IEEE Trans. Neural Networks Learn. Syst.
,
31
(
12
), pp.
5349
5362
.
57.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,”
the 3rd International Conference for Learning Representations
,
San Diego
,
CA, Dec. 22
.
58.
Wang
,
Y.
, and
Lu
,
Y.
,
2021
, “
Diagenetic Facies Prediction Using a LDA-Assisted SSOM Method for the Eocene Beach-Bar Sandstones of Dongying Depression, East China
,”
J. Petrol. Sci. Eng.
,
196
, p.
108040
.
59.
Zhao
,
H.
,
Li
,
Y.
,
Yao
,
J.
, and
Zhang
,
K.
,
2011
, “
Theoretical Research on Reservoir Closed-Loop Production Management
,”
Sci. China Technol. Sci.
,
54
(
10
), pp.
2815
2824
.
You do not currently have access to this content.