Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Formation damage due to fines migration after water breakthrough during oil and gas production results in significant well productivity decline. A recent study derived an analytical model for fines migration during commingled water–oil production in homogeneous reservoirs. Yet, reservoir heterogeneity highly affects formation damage and well productivity. This article develops an analytical model for layer-cake reservoirs. We develop a novel methodology for characterizing productivity decline by considering the impedance as a function of water-cut, two quantities that are commonly measured throughout the production life of the well. The methodology is based on a new analytical model for inflow performance in layer-cake reservoirs under fines migration. The new model integrates pseudo-phase-permeability functions for commingled water–oil production with equations for fines release and induced permeability damage. The analytical model reveals linear well impedance growth versus water-cut increase, where the slope is determined by a modified form of the mobility ratio which includes the extent of formation damage. This linear form is shown to arise when the formation damage factor is constant, regardless of the distribution of reservoir permeabilities. The model is validated by comparison with production histories of five wells from three fields, which exhibit good agreement with the linear trend predicted by the new model. The explicit formulae allows for the prediction of productivity at abandonment, determining the optimal well stimulation time, as well as reconstructing skin values during the early stages of production to better estimate the influences of other formation damage factors, like those induced during drilling and completion.

References

1.
Civan
,
F.
,
2007
,
Reservoir Formation Damage: Fundamentals, Modeling, Assessment, and Mitigation
,
Guld Professional Publishing, Elsevier
,
Burlington
.
2.
Khilar
,
K. C.
, and
Fogler
,
H. S.
,
1998
,
Migration of Fines in Porous Media
,
Kluwer Academic Publishers
,
Dordrecht
.
3.
Zeinijahromi
,
A.
,
Vaz
,
A.
, and
Bedrikovetsky
,
P.
,
2012
, “
Well Impairment by Fines Migration in Gas Fields
,”
J. Pet. Sci. Eng.
,
88
, pp.
125
135
.
4.
Zhang
,
X.
,
Ge
,
J.
,
Kamali
,
F.
,
Othman
,
F.
,
Wang
,
Y.
, and
Le-Hussain
,
F.
,
2020
, “
Wettability of Sandstone Rocks and Their Mineral Components During CO2 Injection in Aquifers: Implications for Fines Migration
,”
J. Nat. Gas Sci. Eng.
,
73
, p.
103050
.
5.
Othman
,
F.
,
Yu
,
M.
,
Kamali
,
F.
, and
Hussain
,
F.
,
2018
, “
Fines Migration During Supercritical CO2 Injection in Sandstone
,”
J. Nat. Gas Sci. Eng.
,
56
, pp.
344
357
.
6.
Ge
,
J.
,
Zhang
,
X.
, and
Le-Hussain
,
F.
,
2022
, “
Fines Migration and Mineral Reactions as a Mechanism for CO2 Residual Trapping During CO2 Sequestration
,”
Energy
,
239
, p.
122233
.
7.
Guo
,
Z.
,
Hussain
,
F.
, and
Cinar
,
Y.
,
2016
, “
Physical and Analytical Modelling of Permeability Damage in Bituminous Coal Caused by Fines Migration During Water Production
,”
J. Nat. Gas Sci. Eng.
,
35
, pp.
331
346
.
8.
Pranesh
,
V.
,
Balasubramanian
,
S.
,
Kumar
,
R.
,
Sakthivel
,
R.
,
Rajkumar
,
P.
, and
Ravikumar
,
S.
,
2019
, “
Kaolinite Flakes and Coal Fines Production in Lignite Core Under Ambient Conditions: A Case Study of Neyveli Lignite Field at Cauvery Basin, Southern India
,”
J. Nat. Gas Sci. Eng.
,
64
, pp.
72
80
.
9.
Bai
,
T.
,
Chen
,
Z.
,
Aminossadati
,
S. M.
,
Rufford
,
T. E.
, and
Li
,
L.
,
2017
, “
Experimental Investigation on the Impact of Coal Fines Generation and Migration on Coal Permeability
,”
J. Pet. Sci. Eng.
,
159
, pp.
257
266
.
10.
Almutairi
,
A.
,
Saira
,
S.
,
Wang
,
Y.
, and
Le-Hussain
,
F.
,
2023
, “
Effect of Fines Migration on oil Recovery From Carbonate Rocks
,”
Adv. Geo-Energy Res.
,
8
(
1
), pp.
61
70
.
11.
Wang
,
Y.
,
Bedrikovetsky
,
P.
,
Yin
,
H.
,
Othman
,
F.
,
Zeinijahromi
,
A.
, and
Le-Hussain
,
F.
,
2022
, “
Analytical Model for Fines Migration Due to Mineral Dissolution During CO2 Injection
,”
J. Nat. Gas Sci. Eng.
,
100
, p.
104472
.
12.
Mahmoudpour
,
M.
, and
Pourafshary
,
P.
,
2021
, “
Investigation of the Effect of Engineered Water/Nanofluid Hybrid Injection on Enhanced oil Recovery Mechanisms in Carbonate Reservoirs
,”
J. Pet. Sci. Eng.
,
196
, p.
107662
.
13.
Moradpour
,
N.
,
Pourafshary
,
P.
, and
Zivar
,
D.
,
2021
, “
Experimental Analysis of Hybrid low Salinity Water Alternating gas Injection and the Underlying Mechanisms in Carbonates
,”
J. Pet. Sci. Eng.
,
202
, p.
108562
.
14.
Karami
,
M.
,
Sedaee
,
B.
, and
Nakhaee
,
A.
,
2023
, “
Investigating Different Fluids and Injection Patterns on the Effect of Reservoir Rock Quality Alteration due to Swelling and Migration of Clay Minerals at Carbonate Reservoirs
,”
ASME J. Energy Resour. Technol.
,
145
(
10
), p.
103501
.
15.
Song
,
W.
, and
Kovscek
,
A. R.
,
2016
, “
Direct Visualization of Pore-Scale Fines Migration and Formation Damage During Low-Salinity Waterflooding
,”
J. Nat. Gas Sci. Eng.
,
34
, pp.
1276
1283
.
16.
Yuan
,
H.
, and
Shapiro
,
A. A.
,
2011
, “
Induced Migration of Fines During Waterflooding in Communicating Layer-Cake Reservoirs
,”
J. Pet. Sci. Eng.
,
78
(
3–4
), pp.
618
626
.
17.
Coronado
,
M.
, and
Díaz-Viera
,
M. A.
,
2017
, “
Modeling Fines Migration and Permeability Loss Caused by Low Salinity in Porous Media
,”
J. Pet. Sci. Eng.
,
150
, pp.
355
365
.
18.
Tangparitkul
,
S.
,
Saul
,
A.
,
Leelasukseree
,
C.
,
Yusuf
,
M.
, and
Kalantariasl
,
A.
,
2020
, “
Fines Migration and Permeability Decline During Reservoir Depletion Coupled With Clay Swelling Due to Low-Salinity Water Injection: An Analytical Study
,”
J. Pet. Sci. Eng.
,
194
, p.
107448
.
19.
Yuan
,
B.
,
Moghanloo
,
R. G.
, and
Wang
,
W.
,
2018
, “
Using Nanofluids to Control Fines Migration for Oil Recovery: Nanofluids co-Injection or Nanofluids Pre-Flush?—A Comprehensive Answer
,”
Fuel
,
215
, pp.
474
483
.
20.
Yuan
,
B.
,
Moghanloo
,
R. G.
, and
Zheng
,
D.
,
2016
, “
Analytical Evaluation of Nanoparticle Application to Mitigate Fines Migration in Porous Media
,”
SPE J.
,
21
(
06
), pp.
2,317
312,332
.
21.
Yuan
,
B.
, and
Moghanloo
,
R. G.
,
2018
, “
Nanofluid Precoating: An Effective Method to Reduce Fines Migration in Radial Systems Saturated With Two Mobile Immiscible Fluids
,”
SPE J.
,
23
(
03
), pp.
998
1018
.
22.
Assef
,
Y.
,
Arab
,
D.
, and
Pourafshary
,
P.
,
2014
, “
Application of Nanofluid to Control Fines Migration to Improve the Performance of Low Salinity Water Flooding and Alkaline Flooding
,”
J. Pet. Sci. Eng.
,
124
, pp.
331
340
.
23.
Mansouri
,
M.
,
Nakhaee
,
A.
, and
Pourafshary
,
P.
,
2019
, “
Effect of SiO2 Nanoparticles on Fines Stabilization During Low Salinity Water Flooding in Sandstones
,”
J. Pet. Sci. Eng.
,
174
, pp.
637
648
.
24.
Sahai
,
R.
, and
Moghanloo
,
R. G.
,
2019
, “
Proppant Transport in Complex Fracture Networks—A Review
,”
J. Pet. Sci. Eng.
,
182
, p.
106199
.
25.
Sharma
,
M. M.
, and
Yortsos
,
Y. C.
,
1987
, “
Fines Migration in Porous Media
,”
AIChE J.
,
33
(
10
), pp.
1654
1662
.
26.
Mehdizad
,
A.
,
Pourafshary
,
P.
, and
Sedaee
,
B.
,
2022
, “
Visual Investigation of Simultaneous Clay Swelling and Migration Mechanisms and Formation Damage Consequences Using Micromodels
,”
J. Pet. Sci. Eng.
,
214
, p.
110561
.
27.
You
,
Z.
,
Badalyan
,
A.
,
Yang
,
Y.
,
Bedrikovetsky
,
P.
, and
Hand
,
M.
,
2019
, “
Fines Migration in Geothermal Reservoirs: Laboratory and Mathematical Modelling
,”
Geothermics
,
77
, pp.
344
367
.
28.
Sarkar
,
A. K.
, and
Sharma
,
M. M.
,
1990
, “
Fines Migration in Two-Phase Flow
,”
J. Pet. Technol.
,
42
(
05
), pp.
646
652
.
29.
Chequer
,
L.
,
Bedrikovetsky
,
P.
,
Badalyan
,
A.
, and
Gitis
,
V.
,
2020
, “
Water Level and Mobilisation of Colloids in Porous Media
,”
Adv. Water Res.
,
143
, p.
103670
.
30.
Bedrikovetsky
,
P.
,
Siqueira
,
F. D.
,
Furtado
,
C. A.
, and
Souza
,
A. L. S.
,
2011
, “
Modified Particle Detachment Model for Colloidal Transport in Porous Media
,”
Transp. Porous Media
,
86
(
2
), pp.
383
413
.
31.
Hashemi
,
A.
,
Nguyen
,
C.
,
Loi
,
G.
,
Khazali
,
N.
,
Yang
,
Y.
,
Dang-Le
,
B.
,
Russell
,
T.
, and
Bedrikovetsky
,
P.
,
2023
, “
Colloidal Detachment in Porous Media: Stochastic Model and Upscaling
,”
Chem. Eng. J.
,
474
, p.
145436
.
32.
Kalantariasl
,
A.
,
Schulze
,
K.
,
Storz
,
J.
,
Burmester
,
C.
,
Küenckeler
,
S.
,
You
,
Z.
,
Badalyan
,
A.
, and
Bedrikovetsky
,
P.
,
2019
, “
Produced Water Re-Injection and Disposal in Low Permeable Reservoirs
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
072905
.
33.
Osman
,
A. M.
,
Halim
,
N. H.
,
Alwi
,
N.
,
Sedaralit
,
M. F.
,
Ibrahim
,
J. M.
,
Hamid
,
P. A.
, and
Ohen
,
H. A.
,
2014
, “
Investigation of Fine Migration, Clay Swelling and Injectivity Problem During FAWAG Study in West Malaysia Oil Field
,”
International Petroleum Technology Conference
,
Kuala Lumpur, Malaysia
,
Dec. 10–12
.
34.
Chequer
,
L.
,
Vaz
,
A.
, and
Bedrikovetsky
,
P.
,
2018
, “
Injectivity Decline During Low-Salinity Waterflooding Due to Fines Migration
,”
J. Pet. Sci. Eng.
,
165
, pp.
1054
1072
.
35.
Nunes
,
M.
,
Bedrikovetsky
,
P.
,
Newbery
,
B.
,
Paiva
,
R.
,
Furtado
,
C.
, and
De Souza
,
A.
,
2010
, “
Theoretical Definition of Formation Damage Zone With Applications to Well Stimulation
,”
ASME J. Energy Resour. Technol.
,
132
(
3
), p.
033101
.
36.
Khilar
,
K. C.
,
Fogler
,
H. S.
, and
Ahluwalia
,
J. S.
,
1983
, “
Sandstone Water Sensitivity: Existence of a Critical Rate of Salinity Decrease for Particle Capture
,”
Chem. Eng. Sci.
,
38
(
5
), pp.
789
800
.
37.
Akhmetgareev
,
V.
, and
Khisamov
,
R.
,
2015
, “
40 Years of Low-Salinity Waterflooding in Pervomaiskoye Field, Russia: Incremental Oil
,”
SPE European Formation Damage Conference and Exhibition
,
Budapest, Hungary
,
June 3–5
.
38.
Prommer
,
H.
,
Descourvieres
,
C. D.
,
Handyside
,
M.
,
Johnston
,
K.
,
Harris
,
B.
,
Li
,
Q.
,
Fang
,
H.
,
Costello
,
P.
,
Seibert
,
S.
, and
Martin
,
M.
,
2013
, “
Final Report—Aquifer Storage and Recovery of Potable Water in the Leederville Aquifer
,” CSIRO: Water for a Healthy Country National Research Flagship, Australia.
39.
Schembre
,
J. M.
, and
Kovscek
,
A. R.
,
2005
, “
Mechanism of Formation Damage at Elevated Temperature
,”
ASME J. Energy Resour. Technol.
,
127
(
3
), pp.
171
180
.
40.
Aramrak
,
S.
,
Flury
,
M.
, and
Harsh
,
J. B.
,
2011
, “
Detachment of Deposited Colloids by Advancing and Receding Air–Water Interfaces
,”
Langmuir
,
27
(
16
), pp.
9985
9993
.
41.
Sharma
,
P.
,
Flury
,
M.
, and
Zhou
,
J.
,
2008
, “
Detachment of Colloids From a Solid Surface by a Moving Air–Water Interface
,”
J. Colloid Interface Sci.
,
326
(
1
), pp.
143
150
.
42.
Lazouskaya
,
V.
,
Wang
,
L.-P.
,
Or
,
D.
,
Wang
,
G.
,
Caplan
,
J. L.
, and
Jin
,
Y.
,
2013
, “
Colloid Mobilization by Fluid Displacement Fronts in Channels
,”
J. Colloid Interface Sci.
,
406
, pp.
44
50
.
43.
Lazouskaya
,
V.
,
Jin
,
Y.
, and
Or
,
D.
,
2006
, “
Interfacial Interactions and Colloid Retention Under Steady Flows in a Capillary Channel
,”
J. Colloid Interface Sci.
,
303
(
1
), pp.
171
184
.
44.
Civan
,
F.
, and
Rasmussen
,
M. L.
,
2005
, “Analytical Models for Porous Media Impairment by Particles in Rectilinear and Radial Flows,”
Handbook of Porous Media
,
CRC Press
,
Boca Raton, FL
, pp.
503
562
.
45.
Yuan
,
B.
, and
Moghanloo
,
R. G.
,
2017
, “
Analytical Model of Well Injectivity Improvement Using Nanofluid Preflush
,”
Fuel
,
202
, pp.
380
394
.
46.
Kuzmina
,
L. I.
,
Osipov
,
Y. V.
, and
Astakhov
,
M. D.
,
2022
, “
Bidisperse Filtration Problem With Non-Monotonic Retention Profiles
,”
Ann. Mat. Pura Appl.
,
201
(
6
), pp.
2943
2964
.
47.
Yuan
,
B.
, and
Moghanloo
,
R. G.
,
2018
, “
Nanofluid pre-Treatment, an Effective Strategy to Improve the Performance of Low-Salinity Waterflooding
,”
J. Pet. Sci. Eng.
,
165
, pp.
978
991
.
48.
Nguyen
,
C.
,
Loi
,
G.
,
Russell
,
T.
,
Mohd Shafian
,
S. R.
,
Zulkifli
,
N. N.
,
Chee
,
S. C.
,
Razali
,
N.
,
Zeinijahromi
,
A.
, and
Bedrikovetsky
,
P.
,
2022
, “
Well Inflow Performance Under Fines Migration During Water-Cut Increase
,”
Fuel
,
327
, p.
124887
.
49.
Bedrikovetsky
,
P.
,
1993
,
Mathematical Theory of Oil and Gas Recovery: With Applications to ex-USSR Oil and Gas Fields
,
Kluwer Academic Publisher
,
Boston, MA
.
50.
Dietz
,
D.
,
1953
, “
A Theoretical Approach to the Problem of Encroaching and By-Passing Edge Water
,”
Akad. van Wetenschappen
,
Proc. 56-B
, pp.
83
92
.
51.
Yuan
,
B.
, and
Moghanloo
,
R. G.
,
2019
, “
Analytical Modeling Nanoparticles-Fines Reactive Transport in Porous Media Saturated With Mobile Immiscible Fluids
,”
AIChE J.
,
65
(
10
), pp.
e16702
.
52.
Ge
,
J.
,
Zhang
,
X.
,
Othman
,
F.
,
Wang
,
Y.
,
Roshan
,
H.
, and
Le-Hussain
,
F.
,
2020
, “
Effect of Fines Migration and Mineral Reactions on CO2-Water Drainage Relative Permeability
,”
Int. J. Greenhouse Gas Control
,
103
, pp.
103184
.
53.
Al-Sarihi
,
A.
,
Zeinijahromi
,
A.
,
Genolet
,
L.
,
Behr
,
A.
,
Kowollik
,
P.
, and
Bedrikovetsky
,
P. J. E.
,
2018
, “
Effects of Fines Migration on Residual oil During Low-Salinity Waterflooding
,”
Energy Fuels
,
32
(
8
), pp.
8296
8309
.
54.
Russell
,
T.
,
Chequer
,
L.
,
Borazjani
,
S.
,
You
,
Z.
,
Zeinijahromi
,
A.
, and
Bedrikovetsky
,
P.
,
2018
, “Formation Damage by Fines Migration: Mathematical and Laboratory Modeling, Field Cases,”
Formation Damage During Improved Oil Recovery
,
B.
Yuan
, and
D. A.
Wood
, eds.,
Gulf Professional Publishing
,
Houston, TX
, pp.
69
175
.
55.
Prempeh
,
K. O. K.
,
Chequer
,
L.
,
Badalyan
,
A.
, and
Bedrikovetsky
,
P.
,
2020
, “
Effects of the Capillary-Entrapped Phase on Fines Migration in Porous Media
,”
J. Nat. Gas Sci. Eng.
,
73
, pp.
103047
.
56.
Kamps
,
E. J.
,
Chando
,
J. M.
, and
Ellis
,
R. C.
,
2010
, “
Improving Well Productivity Through Openhole Frac-Pack Completion Design
,”
SPE Annual Technical Conference and Exhibition
,
Florence, Italy
,
Sept. 20–22
.
57.
HaiMing
,
W.
,
Wah
,
K.
,
Nguyen
,
P.
,
Fleming
,
J.
, and
Lai
,
E.
,
2010
, “
Long-Term Production Results of High-Rate Water Packs: Case Histories From Nanhai West Bay, South China Sea
,”
SPE International Symposium and Exhibition on Formation Damage Control
,
Lafayette, LA
,
Feb. 14–17
.
58.
Shapiro
,
A. A.
,
2016
, “
Mechanics of the Separating Surface for a Two-Phase Co-Current Flow in a Porous Medium
,”
Transp. Porous Media
,
112
(
2
), pp.
489
517
.
59.
Shapiro
,
A. A.
,
2021
, “
Continuous Upscaling and Averaging
,”
Chem. Eng. Sci.
,
234
, pp.
116454
.
60.
Shapiro
,
A. A.
,
2022
, “
Continuous Upscaling of the 3D Diffusion Equation in a Heterogeneous Medium
,”
Chem. Eng. Sci.
,
248
, pp.
117247
.
61.
Shapiro
,
A. A.
,
2007
, “
Elliptic Equation for Random Walks. Application to Transport in Microporous Media
,”
Phys. A
,
375
(
1
), pp.
81
96
.
62.
Rabinovich
,
A.
,
Li
,
B.
, and
Durlofsky
,
L. J.
,
2016
, “
Analytical Approximations for Effective Relative Permeability in the Capillary Limit
,”
Water Resour. Res.
,
52
(
10
), pp.
7645
7667
.
63.
Rabinovich
,
A.
,
2018
, “
Analytical Corrections to Core Relative Permeability for Low-Flow-Rate Simulation
,”
SPE J.
,
23
(
05
), pp.
1851
1865
.
64.
Bedrikovetsky
,
P.
,
2008
, “
Upscaling of Stochastic Micro Model for Suspension Transport in Porous Media
,”
Transp. Porous Media
,
75
(
03
), pp.
335
369
.
You do not currently have access to this content.