Abstract

In the late stage of exploiting heavy oil reservoirs with edge-bottom water, we are faced with problems such as high crude oil viscosity, channeling of bottom water, and rapid rise in water cut. To clarify the synergistic effect of N2, CO2, N2 foam, and viscosity reducer in water control and oil increase, and solve the problem of edge-bottom water rushing into production wells, one-dimensional sand-pack huff and puff experiments were carried out. First, the N2 foam huff and puff experiment evaluated the effect of N2 foam on controlling bottom water. Then the viscosity reducer-assisted CO2 huff and puff experiment analyzed the synergistic viscosity reduction ability between the two to mobilize the remaining heavy oil. Next, the N2 foam–viscosity reducer–CO2 huff and puff experiment clarified the synergistic effect between the three. Finally, the N2 foam–viscosity reducer–CO2–N2 huff and puff experiment solved the problem of insufficient reservoir energy based on synergistic precipitation and oil increase. Experimental results show that N2 foam–viscosity reducer–CO2–N2 huff and puff is the optimal water control and oil increase solution. This solution can significantly reduce water production and increase oil production. In the one-dimensional sand-pack experiment, this technical solution reduced the water content by 68% and increased the recovery rate by 16.09%. The research results provide a reference for the development of exploitation technology schemes for similar edge-bottom water heavy oil reservoirs after entering high water cut.

References

1.
Yang
,
S.
,
Nie
,
Z.
,
Wu
,
S.
,
Li
,
Z.
,
Wang
,
B.
,
Wu
,
W.
, and
Chen
,
Z.
,
2021
, “
A Critical Review of Reservoir Simulation Applications in Key Thermal Recovery Processes: Lessons, Opportunities, and Challenges
,”
Energy Fuels
,
35
(
9
), pp.
7387
7405
.
2.
Adam
,
M.
,
Anbari
,
H.
,
Hart
,
A.
,
Wood
,
J.
,
Robinson
,
J. P.
, and
Rigby
,
S. P.
,
2021
, “
In-Situ Microwave-Assisted Catalytic Upgrading of Heavy Oil: Experimental Validation and Effect of Catalyst Pore Structure on Activity
,”
Chem. Eng. J.
,
413
(
6
), p.
127420
.
3.
IEA
,
2021
,
World Energy Outlook 2021
,
IEA
,
Paris
.
5.
Dong
,
X.
,
Liu
,
H.
,
Chen
,
Z.
,
Wu
,
K.
,
Lu
,
N.
, and
Zhang
,
Q.
,
2019
, “
Enhanced Oil Recovery Techniques for Heavy Oil and Oilsands Reservoirs After Steam Injection
,”
Appl. Energy
,
239
(
4
), pp.
1190
1211
.
6.
Guo
,
K.
,
Li
,
H.
, and
Yu
,
Z.
,
2016
, “
In-Situ Heavy and Extra-Heavy Oil Recovery: A Review
,”
Fuel
,
185
(
12
), pp.
886
902
.
7.
Li
,
S.
,
Li
,
B.
,
Zhang
,
Q.
,
Li
,
Z.
, and
Yang
,
D.
,
2018
, “
Effect of CO2 on Heavy Oil Recovery and Physical Properties in Huff-n-Puff Processes Under Reservoir Conditions
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072907
.
8.
Lu
,
J.
,
Liyanage
,
P. J.
,
Solairaj
,
S.
,
Adkins
,
S.
,
Arachchilage
,
G. P.
,
Kim
,
D. H.
,
Britton
,
C.
,
Weerasooriya
,
U.
, and
Pope
,
G. A.
,
2014
, “
New Surfactant Developments for Chemical Enhanced Oil Recovery
,”
J. Petrol. Sci. Eng.
,
120
(
8
), pp.
94
101
.
9.
Pons-Jiménez
,
M.
,
Cartas-Rosado
,
R.
,
Martínez-Magadán
,
J. M.
,
Oviedo-Roa
,
R.
,
Cisneros-Dévora
,
R.
,
Beltrán
,
H. I.
, and
Zamudio-Rivera
,
L. S.
,
2014
, “
Theoretical and Experimental Insights on the True Impact of C12TAC Cationic Surfactant in Enhanced Oil Recovery for Heavy Oil Carbonate Reservoirs
,”
Colloids Surf. A
,
455
(
8
), pp.
76
91
.
10.
Ashrafizadeh
,
S. N.
, and
Kamran
,
M.
,
2010
, “
Emulsification of Heavy Crude Oil in Water for Pipeline Transportation
,”
J. Petrol. Sci. Eng.
,
71
(
3
), pp.
205
211
.
11.
dos Santos
,
R. G.
,
Bannwart
,
A. C.
,
Briceño
,
M. I.
, and
Loh
,
W.
,
2011
, “
Physico-chemical Properties of Heavy Crude Oil-in-Water Emulsions Stabilized by Mixtures of Ionic and Non-ionic Ethoxylated Nonylphenol Surfactants and Medium Chain Alcohols
,”
Chem. Eng. Res. Des.
,
89
(
7
), pp.
957
967
.
12.
Lv
,
W.
,
Bazin
,
B.
,
Ma
,
D.
,
Liu
,
Q.
,
Han
,
D.
, and
Wu
,
K.
,
2011
, “
Static and Dynamic Adsorption of Anionic and Amphoteric Surfactants With and Without the Presence of Alkali
,”
J. Petrol. Sci. Eng.
,
77
(
2
), pp.
209
218
.
13.
Yu
,
Q.
,
Mu
,
Z.
,
Liu
,
P.
,
Hu
,
X.
, and
Li
,
Y.
,
2019
, “
A New Evaluation Method for Determining Reservoir Parameters for the Development of Edge-Water-Driven Oil Reservoirs
,”
J. Petrol. Sci. Eng.
,
175
(
4
), pp.
255
265
.
14.
Santos
,
R. G.
,
Loh
,
W.
,
Bannwart
,
A. C.
, and
Trevisan
,
O. V.
,
2014
, “
An Overview of Heavy Oil Properties and Its Recovery and Transportation Methods
,”
Braz. J. Chem. Eng.
,
31
(
3
), pp.
571
590
.
15.
Pérez-Martinez
,
E.
,
Rodriguez-de la Garza
,
F.
, and
Samaniego-Verduzco
,
F.
,
2012
, “
Water Coning in Naturally Fractured Carbonate Heavy Oil Reservoir—A Simulation Study
,”
SPE Latin America and Caribbean Petroleum Engineering Conference
,
Mexico City, Mexico
,
Apr. 16–18
.
16.
Deng
,
B.
, and
Liu
,
W.
,
2017
, “
Water Control of Horizontal Wells Using Foam-Gel: Lessons Learnt in a Heavy Oil Reservoir With Strong Waterdrive
,”
SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition
,
Jakarta, Indonesia
,
Oct. 17–19
.
17.
Xu
,
Z.
,
Li
,
Z.
,
Jing
,
A.
,
Meng
,
F.
,
Dang
,
F.
, and
Lu
,
T.
,
2019
, “
Synthesis of Magnetic Graphene Oxide (MGO) and Auxiliary Microwaves to Enhance Oil Recovery
,”
Energy Fuels
,
33
(
10
), pp.
9585
9595
.
18.
Elsharafi
,
M. O.
, and
Bai
,
B.
,
2012
, “
Effect of Weak Preformed Particle Gel on Unswept Oil Zones/Areas During Conformance Control Treatments
,”
Ind. Eng. Chem. Res.
,
51
(
35
), pp.
11547
11554
.
19.
Bai
,
B.
,
Zhou
,
J.
, and
Yin
,
M.
,
2015
, “
A Comprehensive Review of Polyacrylamide Polymer Gels for Conformance Control
,”
Petrol. Explor. Dev.
,
42
(
4
), pp.
525
532
.
20.
You
,
Q.
,
Wen
,
Q.
,
Fang
,
J.
,
Guo
,
M.
,
Zhang
,
Q.
, and
Dai
,
C.
,
2019
, “
Experimental Study on Lateral Flooding for Enhanced Oil Recovery in Bottom-Water Reservoir With High Water Cut
,”
J. Petrol. Sci. Eng.
,
174
(
3
), pp.
747
756
.
21.
Xu
,
Z.-X.
,
Li
,
S.-Y.
,
Li
,
B.-F.
,
Chen
,
D.-Q.
,
Liu
,
Z.-Y.
, and
Li
,
Z.-M.
,
2020
, “
A Review of Development Methods and EOR Technologies for Carbonate Reservoirs
,”
Petrol. Sci.
,
17
(
4
), pp.
990
1013
.
22.
Wang
,
J.
,
Liu
,
H.
,
Ning
,
Z.
, and
Zhang
,
H.
,
2012
, “
Experimental Research and Quantitative Characterization of Nitrogen Foam Blocking Characteristics
,”
Energy Fuels
,
26
(
8
), pp.
5152
5163
.
23.
Andrianov
,
A.
,
Farajzadeh
,
R.
,
Mahmoodi Nick
,
M.
,
Talanana
,
M.
, and
Zitha
,
P. L. J.
,
2012
, “
Immiscible Foam for Enhancing Oil Recovery: Bulk and Porous Media Experiments
,”
Ind. Eng. Chem. Res.
,
51
(
5
), pp.
2214
2226
.
24.
Chen
,
D.
,
Zhao
,
H.
,
Liu
,
K.
,
Huang
,
Y.
, and
Li
,
B.
,
2021
, “
The Effect of Emulsion and Foam on Anti-water Coning During Nitrogen Foam Injection in Bottom-Water Reservoirs
,”
J. Petrol. Sci. Eng.
,
196
(
1
), p.
107766
.
25.
Pang
,
Z.
,
Cheng
,
L.
,
Chen
,
Y.
, and
Liao
,
G.
,
2007
, “
Study on Nitrogen Foam Anti-water-coning Technology for Conventional Heavy Oil Reservoir
,”
J. Petrol.
,
2007
(
5
), pp.
99
103
.
26.
Pang
,
Z.
,
Cheng
,
L.
,
Xu
,
J.
, and
Feng
,
R.
,
2008
, “
Application of Material Balance Method to Nitrogen Anti-water-coning Technology
,”
Petrol. Explor. Dev.
,
35
(
2
), pp.
234
238
.
27.
Cao
,
R.
,
Yang
,
H.
,
Sun
,
W.
, and
Zee Ma
,
Y.
,
2015
, “
A New Laboratory Study on Alternate Injection of High Strength Foam and Ultra-low Interfacial Tension Foam to Enhance Oil Recovery
,”
J. Petrol. Sci. Eng.
,
125
(
1
), pp.
75
89
.
28.
Wang
,
P.
,
Zhao
,
F.
,
Huang
,
S.
,
Zhang
,
M.
,
Feng
,
H.
,
Li
,
Y.
, and
Song
,
L.
,
2021
, “
Laboratory Investigation on Oil Increment and Water Cut Control of CO2, N2, and Gas Mixture Huff-n-Puff in Edge-Water Fault-Block Reservoirs
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
083001
.
29.
Li
,
B.
,
Zhang
,
Q.
,
Li
,
S.
, and
Li
,
Z.
,
2017
, “
Enhanced Heavy Oil Recovery Via Surfactant-Assisted CO2 Huff-n-Puff Processes
,”
J. Petrol. Sci. Eng.
,
159
(
11
), pp.
25
34
.
30.
Li
,
Z.
, and
Gu
,
Y.
,
2014
, “
Soaking Effect on Miscible CO2 Flooding in a Tight Sandstone Formation
,”
Fuel
,
134
(
10
), pp.
659
668
.
31.
Meng
,
B.
,
Li
,
Z.
,
Lu
,
T.
,
Du
,
L.
,
Wang
,
Y.
,
He
,
X.
, and
Zhang
,
Y.
,
2022
, “
Experimental Study on the Mechanism of Nitrogen Foam to Improve the Recovery of Bottom-Water Heavy Oil Reservoir
,”
Energy Fuels
,
36
(
7
), pp.
3457
3467
.
32.
Pang
,
Z.
,
Liu
,
H.
, and
Zhu
,
L.
,
2015
, “
A Laboratory Study of Enhancing Heavy Oil Recovery With Steam Flooding by Adding Nitrogen Foams
,”
J. Petrol. Sci. Eng.
,
128
(
4
), pp.
184
193
.
33.
Zeng
,
T.
,
Miller
,
C. S.
, and
Mohanty
,
K. K.
,
2020
, “
Combination of a Chemical Blend With CO2 Huff-n-Puff for Enhanced Oil Recovery in Oil Shales
,”
J. Petrol. Sci. Eng.
,
194
(
11
), p.
107546
.
34.
Lv
,
W.
,
Gong
,
H.
,
Dong
,
M.
,
Li
,
Y.
,
Sun
,
H.
,
Sun
,
Z.
, and
Jiang
,
H.
,
2024
, “
Potential of Nonionic Polyether Surfactant-Assisted CO2 Huff-n-Puff for Enhanced Oil Recovery and CO2 Storage in Ultra-low Permeability Unconventional Reservoirs
,”
Fuel
,
359
(
11
), p.
130474
.
35.
Dong
,
X.
,
Shen
,
L. W.
,
Golsanami
,
N.
,
Liu
,
X.
,
Sun
,
Y.
,
Wang
,
F.
,
Shi
,
Y.
, and
Sun
,
J.
,
2020
, “
How N2 Injection Improves the Hydrocarbon Recovery of CO2 HnP: An NMR Study on the Fluid Displacement Mechanisms
,”
Fuel
,
278
(
3
), p.
118286
.
36.
Li
,
S.
,
Sun
,
L.
,
Wang
,
L.
,
Li
,
Z.
, and
Zhang
,
K.
,
2022
, “
Hybrid CO2–N2 Huff-n-Puff Strategy in Unlocking Tight Oil Reservoirs
,”
Fuel
,
309
(
10
), p.
122198
.
You do not currently have access to this content.